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Math 267a - Foundations of Cryptography

Lecture #1: 6 January 1997

Lecturer: Sam Buss

Scribe Notes by: Jeremy Martin

1 Administrivia

Texts for the course: (in order of relevance to this course).

1. M. Luby, Pseudorandomness and Cryptographic Applications, Princeton U. Press, 1996.

2. O. Goldreich, Foundations of Cryptography, unpublished manuscript (available electronically
at http ://www.eccc.uni-trier.de/eccc-local/ECCC-Books/oded book readme.html)

3. A, Menezes, P. van Oorshot, S. Vanstone, Handbook of Applied Cryptography, CRC Press,
1997.

4. N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag, 1994.

5. B. Schneider, Applied Cryptography, Wiley, 1996.

The Math 267a home page is at: http ://euclid.ucsd.edu/˜sbuss/CryptoCourse/.

2 The Cryptologic Model

Some terminology: Cryptography refers to making up codes, Cryptanalysis to breaking codes,
Cryptology to both.
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Alice (sender) Bob (receiver)

Eve (eavesdropper)

Private line

Public line

?

-

?

6

Alice and Bob’s goal is to send a message m, consisting of n bits, along the public line while
preventing Eve from obtaining any information other than the fact that the message was sent.

“One-time pad”: At some time in the past, Alice and Bob used the private line to agree on
a random n-bit key k. To send the message m, Alice encodes it as

e = m ⊕ k

(where ⊕ denotes bitwise addition modulo 2, or the “parity” operation). Then e is the message
that Alice sends to Bob via the public line. Bob, knowing the key, can decrypt it as m = e ⊕ k,
but Eve cannot recover m without knowing k.

The problem with this method is that the keys are not reusable — if Alice and Bob can keep
picking new random keys via the private line, they may as well use the private line to communicate
anyway!

Suppose that Alice uses the same key k to encode two messages m1, m2 as e1 = m1 ⊕ k, e2 ⊕ k.
Then Bob can decode both messages correctly, but Eve can compute

e1 ⊕ e2 = (m1 ⊕ k) ⊕ (m2 ⊕ k) = m1 ⊕ m2

If m1 and m2 are normal English text, then this should be enough for Eve to break the code.
Even if not, it is information that Alice and Bob don’t want Eve to have.

Note that we are assuming that Eve knows the basic algorithms that Alice and Bob are using,
but not the information that they exchange via the private line — i.e., the key. The reason for
this is that we are not usually talking about a single Alice and Bob, but want a single method of
encryption which will work for anyone who wants to share data securely.
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3 Random and Pseudorandom Keys

Let g be a function where g(k, i) = ki ∈ {0, 1]n (i.e., a word of n bits). Alice can use the ki as
codewords to encrypt messages m1, m2, . . . as

e1 = m1 ⊕ g(k, 1)

e2 = m2 ⊕ g(k, 2)

...

Alice desires g to be a pseudorandom function. Informally, this means that although g selects
keywords according to some predetermined algorithm or distribution, there exists no computational
way to distinguish them from “truly random” keywords. If g is pseudorandom, then even if Eve
knows e1 and e2, there exist 2n possible message pairs (m′

1, m
′
2) that could have been sent (since

m1 ⊕ m2 = e1 ⊕ e2).
So Alice is hoping that Eve doesn’t have enough computational power to figure out any in-

formation about the encoded messages by brute force. For example, if n = 128, then 2n equals
1013 times the age of the universe in nanoseconds — making the problem not only intractable with
modern computing power, but also intractable with likely future computing capabilities.

4 When Are Problems “Hard”?

Usually, our cryptologic theorems will take the form

“If Problem A is hard to solve, then Problem B is also hard to solve.”

Our proofs will generally be constructive and will show that if we are given a method of solving
Problem B efficiently, then we can obtain a method for solving Problem A efficiently.

For our best theorems, Problem A will be the problem of factoring large integers. In general,
we will be assuming at least that P 6= NP .

Definition: An algorithm is polynomial-time iff there exists a polynomial p(n) such that for
all inputs of n bits, the algorithm halts in at most p(n) steps.

(Notice that the key-search problem requires 2n steps, which is not polynomially bounded.)
Correspondingly, a function is defined to be polynomial-time if there exists a polynomial-time

algorithm to compute it. Usually we will be talking about functions of the form

f : {0, 1}∗ → {0, 1}∗

where {0, 1}∗ denotes the set of all finite strings of 0’s and 1’s, i.e.,⋃
n∈N

{0, 1}n

Definition: A predicate is a subset of {0, 1}∗. A predicate is said to be polynomial-time iff its
characteristic function is polynomial-time.
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Definition: P is the set of polynomial-time predicates.

Definition: NP is the set of “nondeterministic” polynomial-time predicates. Formally, L ∈
NP iff there exists some L′ ∈ P and polynomial l(n) such that for all x ∈ {0, 1}∗,

x ∈ L ⇐⇒ [∃y ∈ {0, 1}∗ : (x, y) ∈ L′]
where (x, y) is some one-to-one encoding of x and y as a single string (for example, by alternating
bits).

Notice that we need to define the computational models we are using — for example, Turing
machines or RAMs (random-access machines). For the purposes of this course, we will not specify
a precise model of computation; rather, but one should think of computations as being carried out
on an idealized computer. The computer is idealized in that it does not have any fixed bounds on
the amount of time and memory space which may be used. The computation time, or the number
of steps in a computation, should be measured in terms of the number of bit-operations performed
by the idealized computer.

Since we are not able to prove any unconditional negative results about computability, we will
not be hampered by the fact that we have not picked a particular computational model. Instead,
most of our proofs will involve the explicit construction of algorithms.
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Math 267a - Foundations of Cryptogaphy

Lecture #2: 13 January 1997

Lecturer: Sam Buss

Scribe Notes by: Robert Ellis

5 P, NP, and Feasibility

From the first lecture, we have seen that a predicate L is a subset of Σ∗, and that two types of
predicate classes are P and NP , whose characteristic functions are polynomial-time and nondeter-
ministic polynomial-time, respectively. Perhaps the most notorious unsolved problem in algorithmic
complexity theory today is whether P = NP (the forward containment is straightforward).

Example. Let COMPOSITES be the predicate of all composite positive integers in binary
notation. As nondeterminism allows “guessing” in the characteristic function of a predicate, we
can construct a nondeterministic polynomial-time algorithm which guesses a nontrivial factor of
the composite in question, and so COMPOSITES is in NP .

Also of interest is whether or not decidability of membership in a given predicate is computa-
tionally “feasible”. Loosely, feasibility is a measure of confidence in obtaining results in a reasonable
amount of time, for example, in determining whether a given member of Σ∗ is in a predicate. That
is to say algorithms that use an excessively large amount of time will be deemed “infeasible”,
whereas algorithms which can be run in reasonable “do-able” amount of time will be viewed as
“feasible”. Polynomial-time algorithms, such as characteristic functions of predicates in the class
P , are deemed feasible, but exponential-time algorithms are deemed infeasible.

One idea for extending the class of feasible predicates is to incorporate randomization into
algorithms. In general a feasible randomized algorithm should make “coin-flips” and succeed with
a high probability with most coin-flip results.

6 Randomization, BPP, and RP

There are a number of predicate classes which incorporate randomization into their respective char-
acteristic functions. The first such predicate class is BPP (or bounded probabilistic polynomial).

Definition: Let c ∈ (0, 1/2). A predicate L is in the class BPP (c) provided that there is a
polynomial time function f and a polynomial l(n) such that for all x ∈ Σ∗,

x ∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] >
1
2

+ c for random Y , and

x /∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] <
1
2
− c.

10
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Definition: In this class, we will take BPP to refer to the class BPP (1/6); i.e., where c = 1/6.

In defining BPP this way, there is a 2/3 probability of the function returning 1 if the element
x is in the predicate, and a 1/3 probability of the function returning 1 if the element x is not in
the predicate.

In comparing predicate classes, it is often useful to define characteristic functions in terms of
other characteristic functions, for which the following definition is useful.

Definition: A k-ary predicate is a subset of (Σ∗)k.
Homework Exercise 1. Show that

BPP

(
1
nc

)
= BPP (δ) = BPP

(
2−nc)

,

where c and δ are any constants, and n = |x|. (Hint: run the function f(x, Y ) on random inputs
Y repeatedly, use majority vote to decide the answer, and use Chernoff bounds to obtain the
probability the answer is correct.)

The next predicate class is known as RP (or randomized polynomial).
Definition: Let c ∈ (0, 1). A predicate L is in the class RP (c) provided there is a polynomial-

time function f , and a polynomial l(n) such that for all x ∈ Σ∗,

x ∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] > c, and
x /∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] = 0.

Definition: In this class, we take RP to be RP (1/2); i.e., where c = 1/2.
Theorem. Let n = |x| (we are interested primarily in the asymptotic behavior of n when

comparing it to constants). The three classes RP (1/2), RP (1/n), and RP (1 − 2−n) are equal.

Proof. First we will show RP (1/n) = RP (1/2). The reverse containment is easy, by noticing
that 1/2 > 1/n; if x ∈ L and f(x, Y ) = 1 with probability greater than 1/2, the probability is also
certainly greater than 1/n.

For the forward containment, let f be a polynomial-time function, and let l(n) be a polynomial
such that

x ∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] >
1
n

, and

x /∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] = 0.

Define the function g as follows:

g : Σ∗ × (Σ∗)n → {0, 1}, where
g(x, Y1, . . . , Yn) = max(f(x, Y1), . . . , f(x, Yn)),

and Y1, . . . , Yn are random values. The runtime of g is approximately a factor of n times the
runtime of f , and so g is still a polynomial-time function of n. If x /∈ L, then g(x, Y1, . . . , Yn) = 0
with probability 1. If x ∈ L, then g(x, Y1, . . . , Yn) = 0 only if f(x, Yi) = 0 for all i ∈ {1, . . . , n}.
This occurs with probability (1 − 1/n)n, and so g(x, Y1, . . . , Yn) = 1 with probability

1 −
(

1 − 1
n

)n

≈ 1 − 1
e

>
1
2
.

11
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Therefore RP (1/n) = RP (1/2).
Showing RP (1/2) = RP (1 − 2−n) uses the same proof construct, with a slight variation of

the computation of the probability of g = 1; in particular, considering RP (1/2), the probability
that f(x, Yi) = 0 for all i ∈ {1, . . . , n} is less than (1 − 1/2)n, and so g(x, Y1, . . . , Yn) = 1 with
probability greater than

1 −
(

1 − 1
2

)
= 1 − 2−n.

7 Infeasibility and PP

There are certainly a number of predicate classes for which decidability of membership is deemed
infeasible. Predicate classes whose characteristic functions are exponential-time are deemed in-
feasible. As there have been no polynomial-time or otherwise feasible characteristic functions
demonstrated for members of the class NP , this class is presumed infeasible. There is another
similar predicate class which is presumed infeasible, called PP (or probabilistic polynomial).

Definition: A predicate L is in PP provided that there exists a polynomial-time function f
and a polynomial l(n) such that for all x ∈ Σ∗,

x ∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] ≥ 1
2
, and

x /∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] <
1
2
.

Definition of this predicate class provides an alternate method of analyzing the question of
P = NP , to which the next exercise alludes.

Homework Exercise 2. Prove that if P = PP , then P = NP . It may be useful to work with
the following definition of the class NP .

Definition: A predicate L is in NP provided that there exists a polynomial-time function f
and a polynomial l(n) such that for all x ∈ Σ∗,

x ∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] > 0, and
x /∈ L ⇔ PrY ∈Σl(|x|) [f(x, Y ) = 1] = 0.

Homework exercise 2 shows the importance of the fact that BPP and RP are defined by using
a fixed constant c strictly greater than zero.

12
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Lecture #3: 15 January 1997

Lecturer: Sam Buss

Scribe Notes by: Jason Ribando

8 Last Time

Deemed feasible: P, BPP, RP
Presumed Infeasible: NP, PP

9 P/poly, “Polynomial size circuit”

The class of P/poly functions is also deemed feasible.

Definition: Let f : Σ∗ → {0, 1}∗. We say f ∈ P/poly provided there is a polynomial time algo-
rithm A : Σ∗ × Σ∗ → {0, 1} and there is a function y : N → Σ∗ such that for all n, |y(n)| = nO(n)

and such that for all x, f(x) = A(x, y(|x|).

One can think of y(n) as encoding a circuit that computes f as inputs of length n.

Definition: (Informal) A circuit has gates ∧, ∨, ¬, and n inputs, one for each bit of length
n.

Homework #3:
Show that BPP and RP ⊆ P/poly.

Hint: Show that for a given n (where n is the length of inputs) there is a small set Y of values for
Y such that

Pr
Y ∈Y

[f(x, Y ) = 1]

correctly indicates the value of
Pr

Y ∈{0,1}n
[f(x, Y ) = 1].

Then let y(n) be a string encoding the appropriate Y.

10 Function Ensembles

If f : Σ∗ → Σ∗ we often assume that |f(x)| is determined by |x|, ie. we have a function l(n) such
that |f(x)| = l(n) if |x| = n.

13
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Definition: We call such a function f : {0, 1}n → {0, 1}l(n) a function ensemble.

Definition: A predicate is a function ensemble f : {0, 1}n → {0, 1}.

Definition: A probability distiribution ensemble D is a family D = {Dn}n≥1 such that Dn is
is a probability distribution on {0, 1}n.

We write X ∈U {0, 1}n, and if f : {0, 1}n → {0, 1}l(n) then this induces a random variable
f(X) ∈D {0, 1}l(n). Here, {Un}n≥1 = U is the uniform distribution.

11 Pseudorandom Number Generators

Definition: Let g : {0, 1}n → {0, 1}l(n) be a polynomial-time function ensemble with l(n) > n.
Let X ∈U {0, 1}n and Y ∈U {0, 1}l(n). The function g is a pseudorandom number generator
provided: for any “adversary” A such that A : {0, 1}l(n) → {0, 1} and A is polynomial-time
computable, the success probability of A

δA(n) = |Pr
X

[A(g(x)) = 1] − Pr
Y

[A(Y ) = 1|,

is negligible.

Definition: The function h(n) is negligible provided h(n) = no(1), i.e., for all polynomials
p(n), h(n) < 1/p(n) for n sufficiently large.

This definition needs tweaking:
An adversary is allowed to be a randomized polynomial-time function, i.e., A(Y, Z) with Z

truly random: Z ∈U {0, 1}r(n). Then change the definition so the success probability, now defined
to equal

δA(n) = | Pr
X,Z

[A(f(X), Z) = 1] − Pr
Y,Z

[A(Y, Z) = 1]|
is negligible. One can think of Z as random coin flips (or bits) used by A.

Definition: A function g is a S(n)-secure pseudorandom number generator provided that for
every adversary as above (though not necessarily polynomial-time computable) we have that
S(n) ≤ T (n)/δA(n), where T (n) is the worst case running time of A on inputs of length l(n).
We call T (n)/δA(n) the time-success ratio of A.

We’d like to have S(n) = 2
√

n, for instance.

Homework #4: (Easy)
If P = NP , pseudorandom number generators do not exist.

14
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Conjectured pseudorandom number generator:

Select p and q to be n-bit primes congruent to 3 mod 4.
Let z = pq.
Choose x relatively prime to p and q.
Let x0 = x and xi+1 = x2

i mod z.
Let ai be the lower order bit of xi.
Output a1, a2, . . . , a4n ∈ {0, 1}4n.

The function (p, q, x) → a1a2 · · · a4n is conjectured to be a pseudorandom number generator,
even if pq is publicly known to the adversary.

15
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Math 267a - Foundations of Cryptography

Lecture #4: 17 January 1997

Lecturer: Sam Buss

Scribe Notes by: Chris Pollett

12 One way functions

Informal idea: A one way functions is a function

f : Σn −→ Σp(n)

which is easy to compute (i.e., p-time); however, an adversary A given f(x) has a “hard” time
finding an x′ such that f(x′) = f(x). (x′ may equal x.)

Example 12.1 Product: Let x, y > 1 be n-bit integers Define

f(x, y) = x · y.

When x, y are n-bit primes, it is believed that finding x, y from x · y is computationally difficult.
Since x is prime with probability ≈ 1/n (By the prime number theorem π(x) → x/ log x and
n ≈ log x.) both x, y are prime with probability ≈ 1/n2. Product is a so-called “weak” one-way
function which roughly means it has a certain fraction of computationally difficult instances.

Example 12.2 Discrete Log: Let p be an n-bit prime. Let g be a generator of Z∗
p. Define

f : (p, g, x) 7→ (p, g, gx mod p).

Example 12.3 Root Extraction: (RSA function) Let p, q be n-bit primes. Let e be relatively
prime to (p − 1)(q − 1). So the order of Z∗

pq is (p − 1)(q − 1). Define

f : (p, q, e, x) 7→ (p · q, e, xe mod pq).

To invert (p · q, e, y) need to find e
√

y in Z∗
pq. The function fp,q,e(x) = xe mod p · q is one-to-one in

Z∗
pq.

Example 12.4 Square Root: Even the e = 2 case of the last example is believed to be one way.
This case is a four-to-one function as e is not relatively prime to (p − 1)(q − 1).

16
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Each of the above schemes relies on it being feasible to raise a number to a power modulo
another number. We now spend a moment to justify this.

Theorem 12.5 Computing ab mod z where a, b < z can be done in time polynomial in the length
of a, b, z.

Proof: The recursive algorithm is as follows:
If b is even compute ab mod z by squaring a(b/2) mod z modulo z.
If b is odd then compute ab mod z by first squaring a(b/2) mod z then multiplying by a mod z

modulo z.
This gives a polynomial time algorithm as multiplication mod z is polynomial time and it takes

O(|b|) = O(n) squarings or squaring with a multiplication to compute ab mod z. 2

Now we consider some more examples of one-way functions. This time trying to avoid number
theory.

Example 12.6 Subset Sum: Let b1, . . . , bn be n-bit integers chosen at random and let a ⊆
{1, . . . , n} be coded by an element in {0, 1}n. Define

f : (b1, . . . , bn, a) 7→ (
∑
i∈a

bi, b1, . . . , bn).

It conjectured this is hard to invert even though b1, . . . , bn are known.

Example 12.7 Linear Codes: A (k, n, d) linear code is a k × n matric over Z2 such that for all
x 6= 0, x ∈ {0, 1}k the vector xC has at least d ones. The idea is if x 6= y then xC − yC has at
least d ones so we can correct < d/2 errors if we use a linear code as an error correcting code. To
use a linear code as a one way function define

f : (C, x, e) 7→ (C, x, xC + e)

where e has < d/2 ones. This is conjectured to be one way.

Now that we have the intuitive idea of one-way function and these examples under our belt,
let’s try to give a precise definition.

Definition 12.8 Let f : {0, 1} −→ {0, 1}p(n) be a polynomial time computable function ensemble.
Then f is a one-way function provided for all adversaries A which are random p-time, the success
probability of A,

δA(n) = Prx∈{0,1}n [f(A(f(x))) = f(x)],

is negligible.

Definition 12.9 A function f is an S(n)-secure one-way function if any adversary (not necessarily
p-time) has time-success ratio TA(n)/δA(n) ≥ S(n) where TA(n) is the worst case run-time of A
on inputs of length n.

Definition 12.10 A function is a one-way permutation if f : {0, 1}n −→ {0, 1}n is a one-way
function and is one-to-one.

17
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13 One-way functions with public input

Consider a function f : {0, 1}n × {0, 1}q(n) −→ {0, 1}p(n) where the {0, 1}n are supposed to be
vectors of privately known bits and the {0, 1}q(n) are supposed to be vectors of publicly known
bits. We define the success probability of an adversary A trying compute an inverse to f as

δA(n) = PrX∈{0,1}n,Y ∈{0,1}q(n) [f(A(f(x, Y ), Y ), Y ) = f(X, Y )].

Given δA we can modify the definitions above to define a one-way function with public input, an
S(n)-secure one way function with public input, and a one-way permutation with public input.

18
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14 Pseudo-random number generators and one way functions

Theorem 14.1 Any pseudo-random number generator is a one way function.

Proof:
First we’ll show the theory for the case of a deterministic adversary.
Intuistic idea of proof:

Suppose f is a pseudo-random number generator, and yet f is not a one way function. Suppose
our deterministic adversary against one way function-ness, A, has success probability 1. (i.e. We
have f(A(x)) = (x) for all x. ) Next, we convert our one-way adversary, A, into a pseudo-random
adversary B. We define the action of B as follows :

B(y) =
{

1 if f(A(y)) = y
0 otherwise

Let’s do some calculations :
The above definitions mean in particular that: A has run time T (n). A has success probability

δA(n) = 1. f is in P -time. A has time success ratio T (n)/1 = T (n). B has run time ≈ T (n)+nθ(1)

which is without loss of generality T (n). (It is still polynomial.)

Let’s analyze B’s effectiveness and see if it cuts the mustard.
Let X ∈U {0, 1}n (the domain of f )
Let Y ∈U {0, 1}l(n) (the co-domain of f {nicely described superset of the range of f(X) } )

Since
PrX∈{0,1}n [f(A(f(X))) = f(X)] = 1

We have that
PrX∈{0,1}n [B(f(X)) = 1] = 1

and

PrY ∈{0,1}l(n) [B(Y ) = 1] ≤ 2n/2l(n) = 2n−l(n)

So B has success probability δB(n) = |1 − 2n−l(n)| ≥ 1/2 and the time success ratio of B is
≈ T (n)/(1/2) = 2T (n) = twice the time success ratio of A.
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This means B meets the criteria for being an adversary which proves that f is not a pseudo-
random number generator. So ends the deterministic adversary case.

Proof of Thereom: (Remove deterministic restriction)1

Let A be an adversary against f being a one way function. Let A have run time T (n) and
success probability δ(n). Next, we define adversary B′ :

First calculate z = A(y).
If f(z) = y then B′ = 1.
Otherwise, with probability 1/2, B′ outputs 1, and, with probability 1/2, B′ outputs 0.

Note that the adversary B′ first tries to invert f on y; if this fails, it then makes a guess as to
whether y is in the range of f .

The runtime of B′ ≈ T (n). (B′ performs A’s calculations and then f ’s. )
To find the success probability of B, we estimate as follows:

PrX∈{0,1}n [B′(f(X)) = 1] = PrX∈{0,1}n [B′(f(X)) = 1]
≥ δ(n) · 1 + (1 − δ(n))(1/2) = 1/2 + (1/2)δ(n).

P rY ∈{0,1}l(n) [B′(Y ) = 1] ≤ 2n−l(n)(1/2 + (1/2)δ(n)) + (1 − 2n−l(n))(1/2)
≤ (1/2)(1/2 + (1/2)δ(n)) + 1/2
= 1/2 + (1/4)δ(n).

(Recall that we have chosen l(n) ≥ n + 1)

Now we have that the success probability of B′ is greater than (1/4)δ(n). So the time-success
ratio of B′ ≤ T (n)/(1/4)δ(n) = 4(time-success ratio of A ) 2

A weaker converse holds whose proof will be presented later.

Theorem 14.2 If there exists a one way function then there exists a pseudo-random number gen-
erator.

Remark 14.3 Do not miss the significance of the above theorem. The existence of pseudo-random
number generators might at first seem questionable while one way functions are quite believable.
Examples of one way functions are “easy” to find. Examples of pseudo-random number generators
are much harder to find.

Definition 14.4 Here let us recall our definition of NP: Let f(x, y) be P -time computable, then
A ∈ NP can be defined as A(x) if and only if there exists a y ∈ {0, 1}p(|x|) such that f(x, y) = 1

1This proof is little more complicated than it needs to be. [S.B.]
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Definition 14.5 An NP search problem for f(x, y) , p(n) is solved for any g(x) such that for all
x

1. If there is a y ∈ {0, 1}p(|x|) such that f(x, y) = 1 then g(x) is such a y.

2. Otherwise g(x) = 0

15 Weak one way functions

Definition 15.1 Let f : {0, 1}n −→ {0, 1}l(n) and suppose w(n) is a non-negligible function. (i.e.
w(n) ≥ 1/nc for some c > 0 ) Then f is an S(n)-secure w(n)-weak one way function provided that
for any adversary A : {0, 1}l(n) −→ {0, 1}n either A has runtime TA(n) < S(n) or A has success
probability δA(n) ≤ 1 − w(n) (i.e. A has probability of failure ≥ w(n)) We can say there is a
non-negligible chance of inverting the function.

Definition 15.2 A function f is a weak one way function provided there is a non-negligible ε(n)
such that every polynomial time adversary has success probability < 1 − ε(n)

Exercise 5) Prove that if P = NP then one-way functions don’t exist. (Hint: Consider Exercise
6)

Exercise 6) Prove that if P = NP then NP search problems are solvable in polynomial time. (Hint:
Let y0 = least such y solving search problem (if there is one). Solve NP problems to determine the
l(n) bits in y0 one at a time. )
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16 Converting Weak One Way Functions to One Way Functions

Theorem 16.1 If there is a weak one way function f, then there is a one way function g.

Proof:
Construction:

Let f be an Rf (n) secure w(n) weak one way function. [Note: w(n) ≈ 1
nc ]

f : {0, 1}n → {0, 1}l(n)

Define g as follows: let N = 2n/w(n)

g : {0, 1}n×N → {0, 1}l(n)×N

By interpreting y ∈ {0, 1}n×N as y = y1y2 · · · yN , yi ∈ {0, 1}n then:

g(y) = f(y1)f(y2) · · · f(yN )

We’ll show that g is a Rg secure one way function, where g has inputs of size nN , and view Rg

as a function of nN . (Note: nN is called the security parameter, that is, the number of bits to be
kept secret.)

We’ll have
Rf (n) ≤ nO(1)Rg(nO(1))

If Rf (n) is not bounded by a polynomial, (i.e. f is a weak one way function), then neither is Rg(n),
so that g is a one way function.

Idea of proof :
Suppose we have an adversary A for g. From A, we shall construct an adversary SA for f .
The input into SA is z ∈ {0, 1}l(n) The goal of SA is to find a value x ∈ {0, 1}n such that

f(x) = z.
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The Algorithm for SA is as follows:

Repeat sufficiently many times: (number to be specified later)

1. Choose i ∈U {1, 2, · · · , N}
2. Choose x1, x2, · · · , xi-1, xi+1, · · · , xN ∈ {0, 1}n

3. Form α = f(x1) · · · f(xi-1)zf(xi+1) · · · f(xN)
4. Set u = A(α), and view u as u = u1u2 · · ·uN

5. If f(ui) = x output ui and halt.
Otherwise, loop.

To prove the Theorem, we still need to analyze the runtime and success probability of SA.

Probability Analysis:
Fix n >> 0. Let F = {0, 1}n,G = {0, 1}n×N Define a bipartite multi-graph, H on F ∪G, where

the edges are {(x, y)|x ∈ F , y ∈ G and x = yi, where y = y1 · · · yN} An edge (x, y) is present once
for each occurrence of x in y = y1 · · · yN .

Definition 16.2 For x ∈ F , define adj(x), the adjacency set of x by

adj(x) = {y|(x, y) ∈ H}

This is a multiset, as is adj(y) = {x|(x, y) ∈ H}. Further |adj(y)| = N and |adj(x)| = N ·2n(N−1)

Definition 16.3 Let X ∈U F , Y ∈U G, and ε, δ ≥ 0. We say H has (ε, δ) forward expansion if for
every F ⊆ F , if Pr

X
[X ∈ F ] = |F |

|F| ≥ ε then Pr
Y

[∃x ∈ F |Y ∈ adj(x)] ≥ 1 − δ

Intuition for definition: Suppose Af is a deterministic adversary for f . We can build and adversary
Ag for g as follows:
Given input, y1, · · · , yN for g compute Af (y1) · · ·Af (yN ). If all these succeed in finding zi = Af (yi)
such that f(zi) = yi, then g outputs z1, · · · , zN .

Claim 1 If H has (ε, δ) forward expansion, and Af has failure rate ε, then Ag has failure rate
≥ 1 − δ.

Proof of Claim: Let F = {x ∈ F|Af (f(x)) fails} Then Ag succeeds only if Af succeeds for all
yi = f(zi), i.e., none of the z1, · · · , zN are in F . This happens when z1, · · · , zN is not adjacent to
any element of F. (This happens with probability ≤ δ.)

Lemma 16.4 For any 0 < ε < 1, H has (ε, (1 − ε)N ) forward expansion.

Proof: Pr
Y

[Y ∈ adj(x), some x ∈ F ] = Pr
Y1···YN∈F

[Yi ∈ F , some i] = 1 − (1 − ε)N = 1 − δ 2

Corollary 16.5 H has
(

w(n)
2 , e−n

)
forward expansion.
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Proof: H has
(

w(n)
2 ,

(
1 − w(n)

2

)N
)

forward expansion, but

(
1 − w(n)

2

)N

=
(

1 − w(n)
2

) 2n
w(n)

=

((
1 − w(n)

2

) 2
w(n)

)n

≤
(

1
e

)n

= e−n

2

NEXT TIME: “Reverse Expansion” The proof of the Theorem will continue next time.
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17 Reverse expansion

Recall from Lecture 6: H is a bipartite graph on F ∪ G with

F = {0, 1}n- inputs to f

G = {0, 1}n×N - inputs to g

and edges (x, y) such that x appears in y

x ∈ F

y = y1y2 . . . yN ∈ G
H has forward expansion (w(n)/2, e−n).

Definition 17.1 H has (ε, δ, γ)-reverse expansion if and only if for all G ≤ G such that PrY [Y ∈
G] = |G|

|G| > δ + γ there is a set F ∈ F such that:

(1) PrX [X ∈ F ] ≥ 1 − ε

(2) For x ∈ F, PrY (x)[Y (x) ∈ G] ≥ γ/N

where Y (x) ∈U adj(x).

Lemma 17.2 If H has (ε, δ) forward expansion, and if γ > 0 then H has (ε, δ, γ) reverse expansion.

Proof:
Let |G|

|G| ≥ δ + γ. Let F = {x : PrY (x)[Y (x) ∈ G] < γ/N}. We need to show |F |
|F| < ε. Let us

assume it is not. By the (ε, δ)-forward expansion definition, the set

G′ = {y : for some x ∈ F , y is adjacent to x}
satisfies |G′|

|G| ≥ 1 − δ.
Let G′′ = G ∩ G′ so |G′′| ≥ γ|G| ≥ γ|G′|.
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Recall: Each node in G has N neighbors in F .
Each y′ in G′ has at most N edges to F .
Each y′ in G′′ has at least one edge to F (since G′ ⊇ G′′).
So at least γ/N fraction of all edges from F go to G′′.
Some x ∈ F has at least γ/N edges to G′′ (and hence to G).
However, this contradicts the definition of F .

2

18 Let’s prove Theorem from Lecture #6

Proof:
Let’s assume A is our adversary for g. For the moment, we assume A is deterministic. The

worst case runtime for A is T (n) (on inputs of length nN). Success probability of A is δ(n).
Time-success ratio of A is Rg(n) = T (n)/δ(n).

Without loss of generality: δ(n) > 2e−n

[Note: This can be assumed without loss of generality since g has adversary with runtime
≈ 2n and success probability 1 (which just used a brute-force search). This has time-success ratio
nO(1)2n/1 < en

2 ]
Let G = {y ∈ G : g(A(y)) = y},

|G|
|G| = δ(n) =

δ(n)
2

+
δ(n)

2

H has (w(n)
2 , δ(n)

2 , δ(n)
2 )-reverse expansion since it has (w(n)

2 , e−n)-forward expansion.
Let F = {x ∈ F : PrY (x)[Y (x) ∈ G] ≥ δ(n)

2N }
PrX [X ∈ F ] ≥ 1 − w(n)

2

Recall the algorithm from Lecture#6:

The Algorithm for SA is as follows:

Input: z = f(x) where x is unknown
Repeat 2nN

δ(n) times:

1. Choose i ∈U {1, 2, · · · , N}
2. Choose x1, x2, · · · , xi-1, xi+1, · · · , xN ∈ {0, 1}n = F
3. Form α = f(x1) · · · f(xi-1)zf(xi+1) · · · f(xN)
4. Set u = A(α), and view u as u = u1u2 · · ·uN

5. If f(ui) = z output ui and halt.
Otherwise, continue looping.

Note that, in the above algorithm, α is chosen at random uniformly g(adj(x))
The probability that one iteration of the loop succeeds is ≥ δ(n)/2N if α ∈ G provided x ∈ F .

For x ∈ F , all 2nN/w(n) loops fail with probability ≤ (1 − δ(n)
2N )

2nN
δ(n) ≤ e−n. Therefore:
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PrX [SA(f(X)) fails] ≤ Pr[X /∈ F ] + e−n ≤ w(n)
2

+ e−n < w(n)

So SA succeeds with probability ≥ 1 − w(n).
The runtime of SA is 2nN

δ(n) (T (n) + nO(1)) ≈ 2nN
δ(n) (T (n)).

Therefore, the time-success ratio of SA:

SA ≈ (2n/δ(n))(2n/w(n))(T (n)/(1 − w(n)))
= nO(1)T (n)/δ(n)
= nO(1)Rg(nN)

Thus,

Rf (n) ≤ nO(1)Rg(nO(1))

That completes the proof of the Theorem for the case where f does not use any public input
and where the adversary is deterministic. The next two observations show that the above proof
also applies to the general case.

Observation 1: The same proof works if there’s a additional “public” input. For public input π
where f : x, π 7→ y, π:

f : {0, 1}n × {0, 1}p(n) → {0, 1}l(n) × {0, 1}p(n)

g : {0, 1}n×N × {0, 1}p(n)×N → {0, 1}l(n)×N × {0, 1}p(n)×N

g : y1π1, y2π2, . . . , ynπn 7→ f(y1π1), f(y2π2), . . . , f(ynπn)

F = {0, 1}n × {0, 1}p(n)

G = {0, 1}n×N × {0, 1}p(n)×N

H is now a bipartitie graph on these larger sets F and G, but the rest of the proof is the same.

Observation 2: If A uses randomization, then the random string A uses can be viewed as a public
input which f just ignores.

PrX,π[f(A(F (x, π), π), π) = f(x, π)]

The only mathematical difference between randomization chosen by A and public inputs chosen
by f is that f is allowed to use the public inputs, but not allowed use random bits generated by A
(and in any event, A usually chooses its random bits after the value of f has been computed). The
operational difference, as used in a cryptographic application, is that f chooses the public input
at random in the knowledge that the adversary A will fail for nearly every public input; therefore,
f doesn’t want A to be able to influence the choice of public input. Likewise, A doesn’t want the
encrypter f to be able influence A’s random choices. 2
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19 (Weak) One-way permutations

Definition 19.1 A (weak) one-way function f : {0, 1}n −→ {0, 1}n is a (weak) one-way permu-
tation provided that it is one-one and onto.

The previous theorem started with a w(n)-weak one-way function f : {0, 1}n −→ {0, 1}l(n) with
security parameter sf (n) = n and constructed a one-way function g : {0, 1}n∗N −→ {0, 1}l(n)∗N ,
where N = 2n

w(n) with security parameter sg(n) = N = nO(1). This significantly increases the
number of bits that must be kept secret. The following construction allows us to create a one-way
permutation g from a weak one-way function f , maintaining the same number of secret bits. In
Luby’s terminology, this is a “linear preserving reduction,” the best kind.

Construction: Let f : {0, 1}n −→ {0, 1}l(n) be a Rf (n)-secure w(n)-weak one-way function. Let
N = 2n

w(n)(= nO(1)). Let π = π1π2...πN be public information with each πi ∈ {0, 1}n. Then
define g : {0, 1}n × {0, 1}n∗N −→ {0, 1}n × {0, 1}n∗N by g(x, π) = (yN+1, π) where yN+1 is found
recursively: Set y1 = x. Then let yi+1 = πi ⊕ f(yi) for i = 1, ..., N . The following illustrates this
process.

x = y1 → f(y1) → y2 = f(y1)⊕π1 → f(y2) → y3 = f(y2)⊕π2 → ... → f(yN ) → yN+1 = f(yN )⊕πN

Theorem 19.2 In the above construction, g is an Rg(n)-secure one-way permutation such that
Rf (n) ≤ nO(1)Rg(n). The security parameter of g is sg(n) = n.

Proof: (Sketch) Let A be an adversary for g with worst-case runtime T (n) and success proba-
bility δ(n). We form an adversary SA for f according to the following algorithm.
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Algorithm: The input to SA is z = f(x).
Repeat the following loop 2nN

δ(n) times:
Choose i ∈U {2, ..., N + 1}.
Choose π ∈U {0, 1}n∗N .
Let yi = z ⊕ πi−1.
Set yj+1 = πj ⊕ f(yj) for j = i...N .
Calculate α = A(yN+1, π). Note that we hope α = (y1, π).
Set yj+1 = πj ⊕ f(yj) for j = 1, ..., i − 2.
If f(yi−1) = z, then output yi−1.
Otherwise continue the loop.

This algorithm inserts the input z as f(yi−1), then continues the original construction. It then uses
A to determine y1 and return to the beginning of the construction, continuing until yi−1 is found.
If f(yi−1) = z, the algorithm was successful.

z → yi = z ⊕ πi−1 → f(yi) → yi+1 = f(yi) ⊕ πi → ... → f(yN ) → yN+1 = f(yN ) ⊕ πN

→ y1 = A(yN+1) → f(y1) → y2 = f(y1) ⊕ π1 → ... → f(yi−2) → yi−1 = f(yi−2) ⊕ πi−2

Analysis: The probability analysis is technically similar to that in the previous proof. The following
are a few of the details which are different. Here, the set F = {0, 1}n × {0, 1}n∗N . Since f is a
permutation, the values (i, yi, π) completely determine the sequence (y1, ..., yN+1, π). So we can let
these sequences be the elements of G, or equivalently, let G = {〈y1, π〉 : y1 ∈ {0, 1}n}. Then the
bipartite graph H has edges (yi, 〈y1, π〉) where i ≤ N and yi appears in the sequence for (y1, π).
Note that all elements of G have degree N . If we knew what x was, the algorithm for SA would
then be equivalent to the following.

The input is z = f(x).
Choose β ∈U adj(x).
Set α = A(β).
If A(β) succeeded, then output f−1(z) = x.

After this, all of the estimates on the success probability of SA are the same as in the last proof.
2

One problem with the above construction is that the number of public bits is significantly
increased. This could cause problems if the adversary is allowed to pick the public information.
Luby’s book contains other constructions which linearly preserve the number of public bits as well
as the number of private ones.

20 Square Root Extraction and Nontrivial Factoring Problems

Square Root Extraction Problem: Given z and x with 2 ≤ x ≤ z − 1, x relatively prime to z, and
x = a2 mod z for some a, find a value b such that x = b2 mod z. An adversary for the square root
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extraction problem has success rate δ(n) if for all z > 2,

ProbX [(A(X, z))2 = X mod z] ≥ δ(n)

where X ∈U {u : 2 ≤ u ≤ z, gcd(u, z) = 1}.
Nontrivial Factor Problem: Given a (composite) number z, find a nontrivial factor.

Theorem 20.1 If the square root extraction problem has an adversary with runtime T (n) and
success rate δ(n), then the nontrivial factor problem has an adversary with runtime T (n)

δ(n) and success
rate ≥ 1

2 . In fact, the success rate can be made arbitrarily close to 1 with runtime increasing by a
constant factor.

Corollary 20.2 If factoring is “hard,” then finding square roots is “hard.”

The proof of the theorem is given in the next lecture.
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21 A Little Bit of Number Theory

We were talking last time about reducing the problem of factoring to the problem of finding square
roots mod n. We would like to restrict our attention to z’s which are not powers of primes. The
case of z = pq, a product of two primes will be the most important application, but we want our
theorems to apply to all composites z. A few facts before we get back to where we were last time:

Fact 1: There exists a polynomial-time algorithm which on input z finds the largest m such that
z is a power of m.

Proof: Evaluate 2
√

z, 3
√

z, . . . , k
√

z, where k is the greatest integer ≤ log2 z. If z = mk then
k ≤ log2z. So we can assume that z is not a prime power because otherwise if z = ml then we can
find m and l in polynomial time.

Fact 2: There exists a polynomial-time algorithm which, given z = pl (a prime power), and
x = a2 mod z (x, z relatively prime),finds a square root of x.

Homework #7: Prove this second fact (or read and understand a proof).

So our problem is now reduced to taking square roots modulo a composite (not a prime or a prime
power). We will also assume z is odd, since otherwise it is easy to find a nontrivial factor of z,
namely 2.

Fact 3: If z is not a prime power and x ≡ a2 mod z and gcd(x, z) = 1, then x has at least four
square roots modulo z.

Proof: a and −a (−a ≡ z − a) are two square roots of x. Write z = pq, with p, q relatively
prime, but not necessarily prime themselves. Let ap ≡ a mod p and aq ≡ a mod q. By the
Chinese Remainder Theorem, there are four values a1, a2, a3, a4 (including a and −a) such that
ai mod p ≡ ±ap and ai mod q ≡ ±aq. (Assume here that p, q > 2 so that a and −a are distinct
modulo p and distinct modulo q.)
Since,

a2
i ≡ x mod p and a2

i ≡ x mod q

We have that
a2

i ≡ x mod pq

.
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One more observation: For z not a prime power, suppose a2 ≡ b2 mod z, a 6= ±b mod z. Then
a2 − b2 = (a + b)(a − b) ≡ 0 mod z. So, gcd(a + b, z) 6= 1 , 6= z and gcd(a + b, z) divides z. Thus
we have a nontrivial factor of z. So to find a factor of z, it suffices to find a2 ≡ b2 mod z with
a 6= ±b mod z.

Lemma 21.1 Suppose A(x, z) is an adversary for finding square roots, and supppose A(x, z) has

Pr
x=a2 mod z
gcd(x,z)=1

[A(x)2 ≡ x mod z] = δz.

Then the following algorithm will find a nontrivial factor of z with probability ≥ 1
2 . Its runtime

is O( runtime of A
δz

). I.e., the success probability of the next algorithm is approximately the success
probability of A. Here z is assumed to be odd and not a prime power. Note that this lemma proves
the theorem stated in the last class.

Algorithm: SA is an adversary with input z seeking a nontrivial factor of z.
Loop ( 2

δz
times)

Choose a ∈U {2, . . . , z − l}.
If gcd(a, z) 6= 1, output gcd(a, z). This is a nontrivial factor of z.
Let x = a2 mod z
Let a′ = A(x)
Let x′ = (a′)2 mod z
If 1 < gcd(a + a′, z) < z, output gcd(a + a′, z).
Otherwise, continue.

Claim: Each iteration of the loop succeeds with probability ≥ 1
2δz

Proof: Adversary A(y), if successful in finding a square root of x, finds one distinct from ±a with
probability

1 − 2
number of square roots of x

.

To see this, note that an equivalent way to choose a, x and a′ is to choose x with probability
proportional to the number of square roots it has, and then let a′ = A(x) and let a be chosen
uniformly from the square roots of x.

The claim states that the success probability of one iteration of the loop is ≥ 1
2δz. Therefore, the

success probability of SA is

1 − (1 − δz

2
)

2
δz > 1 − e−1 >

1
2

QED Lemma and the theorem from yesterday.

22 Next-bit Unpredictability

Next-bit unpredictability is another characteristic of pseudorandom number generators.

Definition 22.1 Let g : {0, 1}n −→ {0, 1}l(n) with l(n) > n be a polynomial-time ensemble. Let
A be an adversary for predicting next bits. Let X ∈U {0, 1}n and I ∈U {1, . . . , l(n)} (X, I random
variables).

g(X)i is the ith bit of g(X) where i = 1, . . . , l(n)
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Let g(X){1,...,i−1} be the first i − 1 bits of g(X).

Then the success probability of A for next-bit prediction is

δ(n) = Pr
X,I

[A(I, g(X){1,...,I−1}) = g(x)I ]

Definition 22.2 g is S(n)-secure next-bit unpredictable iff every adversary A has time-success
ratio ≥ S(n). (We want the next bit to be completely unpredictable based on what we already have.)
We say g is next-bit unpredictable ⇐⇒ g is nc-secure next-bit unpredictable ∀c > 0.

Theorem 22.3 g is next-bit unpredictable ⇐⇒ g is a pseudorandom number generator.

Homework #8: Prove the reverse direction.
Proof: (of the forward direction) Suppose g is not a pseudorandom number generator (PRNG).
Let A be an adversary against g as a PRNG. Let A have runtime T (n) and success probability
δ(n). We must construct another adversary SA that is good at predicting next bits of g. Let Yi be
random variables (i = 0, . . . , l(n)) defined by

Yi = g(X){1,...,i}Zi where Zi ∈U {0, 1}l(n)−i

I.e., replace the last l(n) − i bits of g(X) with random bits.

Let δi = Pr
Yi

[A(Yi) = 1]

So, δo = Pr
Z∈U{0,1}l(n)

[A(Z) = 1]

δl(n) = Pr
X

[A(g(X)) = 1]

So δ(n) = δl(n) − δ0 = success probablity of A (how well A distinguishes between output of g and
random output).
Define ei and δ−i by

ei =
i−1︷ ︸︸ ︷

0 · · · 0 1

l(n)−i︷ ︸︸ ︷
0 · · · 0

δ−i = Pr
Yi

[A(Yi ⊕ ei) = 1]

It is not hard to see that

δi−1 =
1
2
(δi + δ−i )

So δ−i = 2δi−1 − δi

Algorithm for SA: Input i, u = g(X){1,...,i−1}. The goal is to predict the ith bit.
1. Choose z ∈U {0, 1}l(n)−i+1, and form y = uz.
2. Evaluate A(y).
3. If A(y) = 1, output z1, the first bit of z.
Otherwise, output 1 − z1, the complement of the first bit of z.
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Runtime of SA ≈ T (n). The success probability of SA is

Pr
I,X

[SA(I, g(X){1,...,I−1} is correct ]

=
1

l(n)

l(n)−1∑
i=0

Pr
X

[SA(I, g(X){1,...,i−1} is correct ]

=
1

l(n)

∑
i

[
1
2
δi +

1
2
(1 − δ−i )]

=
1

l(n)

∑
i

[
1
2
δi +

1
2
(1 − 2δi−1 + δi)]

=
1

l(n)

∑
i

[δi − δi−1]

=
1

l(n)
[δl(n) − δ0]

=
1

l(n)
δ(n)

So the time success ratio of SA is

l(n)
T (n)
δ(n)

= l(n) · (time success ratio of A)

2
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23 Stretching the output of a pseudorandom number generator

Goal: Given a PRN generator g : {0, 1}n → {0, 1}n+1, construct a PRNG h : {0, 1}n → {0, 1}p(n)

with p(n) > n + 1.
g takes n really random bits and outputs n + 1 pseudorandom bits.

Example 23.1

x = 101 . . . 1︸ ︷︷ ︸
n bits

⇓ g

g(x) = 0 11 . . . 1︸ ︷︷ ︸
n bits

⇓ ⇓ g

011 . . . 1︸ ︷︷ ︸
n + 2 bits

Define:

g0(x) = x

g1(x) = g(x)
g2(x) = (g(x))1g(g(x){2,...,n})

...
gi+1(x) = (g(x))1gi(g(x){2,...,n})

Theorem 23.2 Let p(n) be a polynomial and g : {0, 1}n → {0, 1}n+1 be a PRNG. Then h(x) =
gp(n)(x) is a PRNG with h : {0, 1}n → {0, 1}p(n)+n.

Proof: h is polynomial time because g is. Let A be an adversary against h with runtime TA(n)
and success probability δA(n). Let X ∈U {0, 1}n and Z ∈U {0, 1}n+p(n). Let Yi ∈Di {0, 1}n+p(n) be
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a random variable with distribution Di chosen as

Yi = Z{1,...,p(n)−i} gi(X)︸ ︷︷ ︸
n + i bits

.

Let δi = ProbYi [A(Yi) = 1]. The success probability of A is

δA(n) = Prob
X

[A(gp(n)(X)) = 1] − Prob
Z

[A(Z) = 1].

Note that
Prob

X
[A(gp(n)(X)) = 1] = Prob

Yp(n)

[A(Yp(n)) = 1]

and that
Prob

Z
[A(Z) = 1] = Prob

Y0

[A(Y0) = 1].

Hence δA(n) = δp(n) − δ0.
We construct an adversary SA for g. The algorithm for SA is

SA has input u ∈ {0, 1}n+1

1. Choose i ∈U {1, . . . , p(n)}.
2. Choose z ∈U {0, 1}p(n)−I .

3. Form α = zu1g
i−1(u{2,...,n+1}).

4. Output A(α).

The runtime of SA is TA(n) + nO(1) ≈ TA(n).
Let i be fixed for now. If u ∈U {0, 1}n+1, then α is chosen with distribution Di−1. If u = g(x)

with x ∈U {0, 1}n, then α has distribution Di.
The success probability of SA is

Prob
X

[SA(g(X)) = 1] − Prob
U∈U{0,1}n+1

[SA(U) = 1]

=
1

p(n)

p(n)∑
i=1

(
Prob

X
[SA(g(X)) = 1 | i] − Prob

U∈U{0,1}n+1
[SA(U) = 1 | i]

)

=
1

p(n)

p(n)∑
i=1

(
Prob

Yi

[A(Yi) = 1] − Prob
Yi−1

[A(Yi−1) = 1]
)

=
1

p(n)

p(n)∑
i=1

(δi − δi−1)

=
1

p(n)
(δp(n) − δ0)

=
δA(n)
p(n)

The time-success ratio of SA ≈ p(n)Ta(n)
δA(n) = p(n)· (time-success ratio of A). 2
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We can construct an algorithm for encryption/decryption that uses a PRNG. The idea is to
start with an n-bit long private key and use it as the seed of the PRNG, then stretch the output
of the PRNG to p(n) + n bits, where p(n) is the length of the message that we want to encrypt.

If Alice wants to send a message to Bob they need to share a private key x ∈ {0, 1}n. Let
g : {0, 1}n → {0, 1}n+1 be a PRNG. Given the message m = m1m2 . . . mp(n), Alice’s encryption
algorithm is

Loop i = 1, . . . , p(n)

u = g(x)
ei = u1 ⊕ mi

x = u{2,...,n+1}

End loop.

Output encrypted message: e1e2 . . . ep(n).

Bob’s decryption algorithm is the same.
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24 Private Key Stream Cryptosystems

Private key stream cryptosystems encode messages one symbol at a time, as opposed to block
systems which work with several symbols at once. As usual, we have Alice attempting to send a
message to Bob with Eve trying to listen. The basic idea is that Ali ce has an encryption function
E : {0, ..., n} × {0, 1} −→ {0, 1} such that E(i, mi) returns the ith bit ei of the encryption of
message m, so ei = E(i, mi). (We may assume without loss of much generality that mi ∈ {0, 1}
and ei ∈ {0, 1}, i.e. that bits are coded to bits.) Similarly, Bob has a decryption function D such
that mi = D(i, ei). We present two versions of such a system.

Version One: Let g : {0, 1}n −→ {0, 1}p(n) be a pseudorandom number generator and let Bob
and Alice share a private key x ∈ {0, 1}n. Define

ei = Ex(i, mi) = mi ⊕ (g(x))i,

where (g(x))i denotes the ith bi t of g(x). Since bitwise summing is a self-inversing operation, the
decryption function D is identical to E :

mi = Dx(i, ei) = ei ⊕ (g(x))i.

This system is good for sending up to p(n) message bits.

Version Two: Let g : {0, 1}n −→ {0, 1}n+1 be a pseudorandom number generator. The encryp-
tion algorithm is as follows.

Loop for i = 1, 2, 3, ...
Let u = g(x)
Let ei = u1 ⊕ mi

x = u{2,...,n+1}
End Loop

As before, the decryption algorithm is identical. In fact, this is a merely a special case of the first
version by the stretching theorem.

The stream cryptosystem has a few disadvantages. If a bit is skipped or dropped at any point
in the transmission and the sender and receiver fall out of synch, the message will come back as
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gibberish. Also, Bob and Alice cannot share a key for two-way c ommunication using this system
(although this problem can be rather easily solved if Alice and Bob each agree to use the even
and odd numbered bits, respectively). The most significant problem, however, is that if Alice or
Bob ever lose their value of x (say, by a computer crash), t hen the entire message must be resent
and decoded from the beginning. That is, the ith bit cannot be decoded without doing the work
for decoding the first i − 1 bits. Later, we will discuss block cryptosystems which overcome these
disadvantages.

25 Simple Passive Attack

Suppose adversary Eve knows Alice is sending one of two possible messages, either 0p(n) or 1p(n)

(a string of all ones or all zeroes). Let the key X ∈U {0, 1}n be chosen secretly by Alice and Bob,
and suppose Alice secretly chooses a bit B ∈U {0, 1}. Define the encryption as

eX(B) = g(X) ⊕ Bp(n).

The adversary should try to predict B from eX(B). The success rate of the adversary is defined as

δ(n) = Pr
X,B

[A(eX(B)) = B] − 1
2

=
1
2
( Pr
X,B

[A(eX(B)) = B] − Pr
X,B

[A(eX(B)) 6= B]).

This is simply one-half the probability that the adversary is right minus one-half the probability
the adversary is wrong. The cryptosystem defined is R(n)-secure provided every adversary A has
time-success ratio greater than or equal to R(n). It is secure provided it is nc-secure for all c > 0.

Theorem 25.1 If g is a pseudorandom number generator, then the cryptosystem described above
is secure.

Proof: Let A be an adversary against the cryptosystem with g : {0, 1}n −→ {0, 1}p(n) a
pseudorandom number generator. We construct an adversary SA against g. The input to SA is
z ∈ {0, 1}p(n), and the algorithm is as follows:

Algorithm for SA. The input is z ∈ {0, 1}p(n)

Choose b ∈U {0, 1}
Let e = bp(n) ⊕ z
If A(e) = b, then output 1. Otherwise, output 0.

The runtime of SA is approximately that of A. For the success probablity, we examine the two
cases.
Case One: If Z ∈U {0, 1}p(n), then Pr

Z
[SA(Z) = 1] = 1

2 because e is independent of b and b = 1

with probability 1
2 .
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Case Two: If Z = g(X), X ∈U {0, 1}n, then

Pr
X

[SA(g(X)) = 1] = Pr
X,B

[A(eX(B)) = B] = δA(n) +
1
2
.

Thus, the success probability of SA is δA(n)+ 1
2 − 1

2 = δA(n), the success probability of A. The
time-success ratio of SA is therefore equal to that of A, as desired. 2

Homework 9 Prove this theorem under the assumption that an arbitrary pair of p(n)-bit messages
(which may be chosen by Eve) are to be distinguished (as opposed to just 0p(n) and 1p(n)).

26 Simple Chosen Plaintext Attacks (Informal Definition)

In this situation, the adversary forces Alice to send some messages chosen adaptively by the ad-
versary. The adversary then chooses two new messages m0 and m1, of which Alice secretly chooses
one at random and encrypts it as e. From e, the adve rsary tries to determine which of m0 and m1

was sent.
The simple chosen plaintext attack is defined formally in the next lecture.

40



Math 267a - Foundations of Cryptography Lecture #12: 7 February 1997

Math 267a - Foundations of Cryptography

Lecture #12: 7 February 1997

Lecturer: Sam Buss

Scribe Notes by: David Meyer

27 Simple chosen plaintext attack

Last time we saw the informal definition of a simple chosen plaintext attack; today we formalize
the definition.

Definition 27.1 Alice and Bob (who is irrelevant to this discussion) share a (publicly known)
pseudorandom number generator g : {0, 1}n −→ {0, 1}k(n)+p(n) and a private key x ∈ {0, 1}n.
(k(n) will be the number of plaintext bits Eve will force Alice to encode; p(n) will be the length of
the final message Eve tries to decode.) Their adversary Eve has three algorithms:

(i) M : {1, . . . , k(n)} × {0, 1}k(n)−1 −→ {0, 1}
(ii) P : {0, 1}k(n) −→ {0, 1}p(n) × {0, 1}p(n)

(iii) A : {0, 1}k(n) × {0, 1}p(n) −→ {0, 1}
which she uses to make a simple chosen plaintext attack:

For i = 1, . . . , k(n),

Eve computes mi = M(i, e1 · · · ei−10k(n)−i).

Alice computes ei = mi ⊕ (g(x))i
(
= Ex(i, mi)

)
.

Alice reveals ei to Eve.

End for.

Eve computes (m∗
0, m

∗
1) = P (e1 · · · ek(n)).

Alice privately chooses j ∈ {0, 1} and sends m∗
j encrypted as

e∗ = m∗
j ⊕ (g(x)){k(n)+1,...,p(n)+k(n)}.

Finally Eve runs A(e∗) to try to determine the value of j.

Eve’s success rate is PrX [A(e∗) = j] − 1/2 and her runtime is the total runtime of the k(n)
invocations of M plus the runtimes of P and A.
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Definition 27.2 The cryptosystem is S(n)-secure against simple chosen plaintext attack if every
(M, P, A) adversary has time/success ratio at least S(n). It is secure against simple chosen plaintext
attack iff it is nc-secure for all c > 0.

Theorem 27.3 If g is a pseudorandom number generator then the above (stream private key)
cryptosystem is secure against simple chosen plaintext attack.

Exercise 10 Prove the theorem. Hints: Simplify the problem by letting Alice just give the first
k(n) bits to Eve rather than going through the charade of the for-loop in the attack. Then proceed
as in the proof from last time.

Luby gives some subtle variations on chosen plaintext attack in Chapter 11, none of which
changes the basic intuition. We can even think of Eve as being temporarily able to see both the
plain and the encoded messages; then the theorem is that once she can no longer see the plain
messages, having seen them gives her no information useful for decrypting subsequent encrypted
messages.

28 Block cryptosystems

The ‘block’ in ‘block cryptosystems’ refers to the fact that a whole block of bits is encoded at once.
Blocks will have ‘indices’ (possibly just timestamps) and we will assume that the ith block can
be encrypted/decrypted without having to handle the ‘previous’ i − 1 blocks (which is useful for
synchronization). That is, the runtime to encrypt/decrypt the ith block by itself should include a
factor of |i|O(1), not iO(1). Note that this latter condition (of independence from previous blocks)
is often not satisfied by systems called block cryptosystems elsewhere.

To implement a block cryptosystem, we will need to define a pseudorandom function generator.
We begin with some notation:

Definition 28.1 Let n be a security parameter and `(n), k(n) ≥ n be polynomials. A random
function f : {0, 1}`(n) −→ {0, 1}k(n) is chosen by setting all the 2`(n) many values of f to randomly
chosen values in {0, 1}k(n). There are (2k(n))2

`(n)
= 2k(n)·2`(n)

many such functions. We will denote
the space of all such functions by Fnc : {0, 1}`(n) −→ {0, 1}k(n) and consider random functions
F ∈U Fnc : {0, 1}`(n) −→ {0, 1}k(n).

Our goal is to be able to pick pseudorandom functions from this space which work as well as
truly random F .

Remark 28.2 Notice that any random function can be described by a single (exponentially long)
bit string, that is, by a random number. A pseudorandom number generator, used with this inter-
pretation, would not suffice for our purposes, however, because it could not generate exponentially
long bit strings.

Now let f : {0, 1}n×{0, 1}`(n) −→ {0, 1}k(n) be polynomial time. The first input to f is a private
key x ∈ {0, 1}n. Let fx(u) = f(x, u) for u ∈ {0, 1}`(n). Then fx ∈ Fnc : {0, 1}`(n) −→ {0, 1}k(n).
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Definition 28.3 An adversary against fx is an oracle Turing machine Ag, meaning A running
with g : {0, 1}`(n) −→ {0, 1}k(n) available as a ‘black box’—A can (repeatedly) compute u ∈ {0, 1}`(n)

and obtain g(u) in return. The success rate of A is

δ(n) =
∣∣∣Pr

X
[AfX (n) = 1] − Pr

F
[AF (n) = 1]

∣∣∣,
where X ∈U {0, 1}n and F ∈U Fnc : {0, 1}`(n) −→ {0, 1}k(n).
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29 Pseudo random function generators

Construction of a block cryptosystem using a pseudo random function generator

Let f : {0, 1}n × {0, 1}l(n) → {0, 1}k(n). For our block cryptosystems

• plain text messages are m ∈ {0, 1}k(n),

• indices are i ∈ {0, 1}l(n),

• the secret key is x ∈ {0, 1}n,

• the encrypted message is e = f(x, i) ⊕ m = Ex(i, m),

• the decryption algorithm is the same as the encryption algorithm and

• m = f(x, i) ⊕ e = Dx(i, e).

Indices should never be reused! The transmitted text is the pair 〈e, i〉.
Homework 11: Formulate good notions of simple passive/simple plain text attacks. Prove

that if f is a pseudo random function generator, the above cryptosystem is secure against these
attacks.

Theorem 29.1 If there is a pseudo random number generator g then there is a pseudo random
function generator f .

Proof: By the earlier Stretching Theorem, we may assume without loss of generality that
g : {0, 1}n → {0, 1}2n. We define f(x, u) = fx(u). In fact we will define f(x, u) for all x ∈ {0, 1}n

and all u ∈ {0, 1}≤l(n). Let λ be the empty string in {0, 1}∗ and fx(λ) = x. Let g(u) = g1(u)g2(u),
where g1(u), g2(u) ∈ {0, 1}n. Let fx(u0) = g1(fx(u)) and fx(u1) = g2(fx(u)).
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Let A be an adversary against f , TA(n) be the runtime of A and δA(n) be the success probability
of A. We will construct an adversary SA against g with time success ratio

RSA(n) ≤ nO(1)(RA(n))2, (where RA(n) = TA(n)/δA(n)).

Let δ0 = Pr
X

[Afx(n) = 1] and δ1 = Pr
F

[AF (n) = 1] where X ∈U {0, 1}n and F ∈U Fnc : {0, 1}l(n) →
{0, 1}n. Then δA(n) = δ0−δ. The adversary SA will simulate A’s computation. SA has an element
y ∈ {0, 1}2n as input and A has a function of type {0, 1}l(n) → {0, 1}n as input which it is allowed
to use as a “black-box” computational device.

We would like to simulate A on input fx where x = g−1(input to SA) and/or on input F chosen
at random.

We will arrange for a smooth transition between simulating Afx and AF . During the course of
computation, AF makes up to TA(n) many queries to F . Let AF query values F (w1), F (w2), . . . ,
F (wTA(n)). In the simulation, SA will set values for F (v1), F (v2), . . . , F (v(3/2)TA(n)l(n)) so that
whenever a value for F (u0) or F (u1) is set by A, a value for F (u) was previously set and both
F (u0) and F (u1) are computed. A remembers and does not recompute these values. Let m(n) =
TA(n)l(n) be an upper bound on the number of times SA sets values for a pair F (u0), F (u1). SA

will pick a parameter k ∈ N.
Let u1, . . . um(n) be the values such that SA sets F (ui0), F (ui1). SA sets F (0) at random

in {0, 1}n. If i < k, SA chooses these two values at random in {0, 1}n. If i = k SA chooses
F (ui0) = y{1,...,n} and F (ui0) = y{n+1,...,2n}. If i > k, SA chooses F (ui0) = g1(F (ui)) and
F (ui1) = g2(F (ui)).

Algorithm for SA:

1. choose k ∈ {1, . . . , m(n)}
2. simulate A as above

3. Output whatever the simulation of A outputs.

The runtime of SA is approximately TA(n). Let

P0,k = Pr
X

[SA(g(X)) = 1 | k]

P1,k = Pr
Y ∈{0,1}2n

[SA(Y )) = 1 | k]

45



Math 267a - Foundations of Cryptography Lecture #13: 10 February 1997

By inspection, one can see that δ0 = P0,1, δ1 = P1,m(n) and P0,k+1 = P1,k. Furthermore

Pr
X

[SA(g(X)) = 1] =
1

m(n)

m(n)∑
i=1

P0,i

and

Pr
Y

[SA(Y ) = 1] =
1

m(n)

m(n)∑
i=1

P1,i

Thus the success probability of SA is

1
m(n)

m(n)∑
i=1

(P0,i − P1,i) =
1

m(n)
(P0,1 − P1,m(n)) =

1
m(n)

(δ0 − δ1) =
1

m(n)
δA(n)

and the success ratio of SA is approximately

TA(n)
1

m(n)δA(n)
=

TA(n)l(n)TA(n)
δA(n)

≤ nO(1)(RA(n))2

2
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30 Trapdoor functions & RSA

Probability distributions for trapdoor and public keys are given by a P-time function

Dn : {0, 1}n −→ {0, 1}m(n) × {0, 1}l(n).

If Dn(y) = 〈x, z〉, then x is the private trapdoor key, and z is the public key. This gives a distribution
Dn on {0, 1}m(n) × {0, 1}l(n), namely u ∈Dn {0, 1}m(n) × {0, 1}l(n) is given by

u = Dn(v),

where v ∈U {0, 1}n. Then a trapdoor function is an

f : {0, 1}l(n) × {0, 1}n −→ {0, 1}k(n),

which satisfies the two conditions below. Note that here the first input is the public key, and the
second input is the “plain-text” message.

Let 〈x, z〉 be trapdoor and public keys.
Condition 30.1 There is a P-time function g : {0, 1}l(n) ×{0, 1}k(n) ×{0, 1}m(n) −→ {0, 1}n such

that
f(z, g(z, f(z, y), x)) = f(z, y)

or, writing fz(y) = f(z, y),
fz(g(z, fz(y), x)) = fz(y).

Condition 30.2 (One-way condition) It is difficult to invert fz without knowing x.

The second condition is formalized in the following

Definition 30.3 An adversary for a trapdoor function f is an A : {0, 1}l(n)×{0, 1}k(n) −→ {0, 1}n

with success probability
Pr

X,Y,Z
[fZ(A(Z, fZ(Y ))) = fZ(Y )].
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We say Dn, f form an S(n)-secure trapdoor system if and only if every adversary A has time-
success ratio ≥ S(n); f is called a trapdoor function if and only if Dn, f form an nc-secure trapdoor
system, for all c > 0,

Example 30.4 RSA (root extraction). Let

Dn(y) =

〈
〈p, q〉︸ ︷︷ ︸
private
key

, 〈pq, e〉︸ ︷︷ ︸
public
key

〉

where p, q, e are n-bit primes chosen at random, with e relatively prime to (p − 1)(q − 1), i.e.
e ∈U Z∗

pq (which is of order (p − 1)(q − 1)). Define

f〈pq,e〉(m) = me mod pq.

Here m is relatively prime to pq with extremely high probability, so we just assume it is. Now
given knowledge of p and q, one can invert f = f〈pq,e〉 as follows:

Use Euclid’s algorithm to find a d > 0, d ∈ N such that

de ≡ 1 mod (p − 1)(q − 1).

Remark 30.5 Euclid’s algorithm gives a c, d such that

de + c(p − 1)(q − 1) = 1.

If d < 0, we have also

((p − 1)(q − 1) − d)e + (c − e)(p − 1)(q − 1) = 1.

Euclid’s algorithm can easily be computed in polynomial time.

Once d is known, let
g(〈pq, e〉 , v, 〈p, q〉) = vd mod pq.

We have to check that (f(m))d ≡ m mod pq. Working mod pq,

f(m) = me, so

(me)d = med = me(p−1)(q−1)+1

= m

since m(p−1)(q−1) = 1 (mod pq). Notice that the private key could be taken to be just d, and p, q
don’t need to be remembered.
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Usages:

1. Bob sends a message to Alice. Bob knows the public information, i.e. pq, e. To send a message
m ∈ Z∗

pq, Bob encrypts it as
m′ = f(m) = me mod pq.

Bob sends m′ to Alice over a public line. Alice decrypts it as

m = (m′)d mod pq.

This would be used in a block cryptosystem, with m being one block of the message.

2. Alice can send authenticated messages to Bob, i.e. Bob can be sure they come from Alice.
Alice wants to send a message m ∈ Z∗

pq. She encrypts it as

m′ = md mod pq.

Bob then decrypts it as
m = (m′)e mod pq

using the publicly known pq, e.

3. The above two can be combined as follows: Alice and Bob both choose public and private
keys 〈pA, qA〉 , eA; dA and 〈pB, qB〉 , eB; dB respectively. Alice sends a message m to Bob with

m′ =
(
mdA mod pAqA

)eB

mod pBqB.

Bob decrypts this as
m =

(
(m′)dB mod pBqB

)eA

mod pAqA.

In this scheme, Bob can be sure that the message came from Alice, while Alice can be sure
that only Bob can read the message.
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31 Square Root Extraction

Square Root Extraction is used as a trapdoor function.

Set-up:
Choose 2 n-bit primes p and q.
Dn(y) = 〈〈p, q〉; pq〉
The encryption function is fpq(x) = x2 mod pq

To invert this, we have a homework problem which says: ”Given p, q, and z = x2,
we can find the 4 values a1, a2, a3, a4 such that a2

i ≡ z mod pq.”
Thus, if we have knowledge of the private key 〈p, q〉, we can invert fpq.

Problem: We have 4 square roots, instead of just 1.
Solution #1: Assume that only 1 of the roots will be a valid ”message”.
Solution #2: Take p, q ≡ 3 mod 4. Then there is a unique square root which is a quadratic
residue mod pq.
Note: RSA is more flexible and more widely used. The advantage of square root extraction is that
we know that the statement ”If finding square roots is easy, then factoring is easy” is provable.

32 Existence of Pseudorandom Number Generators

In the next few weeks, we will be refering to Luby, Lectures 5-10.
Goal: To prove that if one-way functions exist, then pseudorandom number generators exist.
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Definition 32.1 Let X1, . . . Xm be random variables, taking values in a finite set S. X1, . . . Xm

are pairwise independent iff

∀α, β ∈ S, Pr[Xi = α, Xj = β] = Pr[Xi = α] Pr[Xj = β] ∀i, j, i 6= j, i, j ∈ {1, . . . , m}

or, equivalently,
∀α, β, i 6= j, Pr[Xi = α|Xj = β] = Pr[Xi = α]

.

Example #1: Generalized Inner Product Space
We’ll choose values in S = {0, 1}n. X1, . . . , Xm will be pairwise independent.
Let l = dlog2(m + 1)e = number of bits in the binary representation of m.
Choose X1, . . . , Xm as follows:

Choose a1, . . . , al ∈U {0, 1}n.
Set Xi =

⊕
k:ik=1

ak , where ik = value of the kth bit of i’s binary representation.

Claim: These are pairwise independent random variables.

Proof of Claim:
Fix i 6= j.
Let I0 = {k|ik = 1 and jk = 0}
Let I1 = {k|ik = 1 and jk = 1}
Let I2 = {k|ik = 0 and jk = 1}

Then
Xi =

⊕
k∈I0

ak ⊕
⊕
k∈I1

ak

Xj =
⊕
k∈I2

ak ⊕
⊕
k∈I1

ak

Without loss of generality, we may assume that I2 6= ∅, since i 6= j. Now

Xj =
⊕
k∈I2

ak ⊕ (Xi ⊕
⊕
k∈I0

ak)

It is easy to see that
⊕

k∈I2

ak is independent of Xi and is independent of (Xi ⊕ ⊕
k∈I0

ak);

thus, it is also uniformly distributed in {0, 1}n.
Therefore, Xj is independent of Xi and Xj ∈U {0, 1}n.
QED Proof of Claim
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Note: We can think of i = (il, il−1, il−2, . . . , i1) as a row l-vector
Let A be an l by n matrix with rows ai. Then Xi = iA.
When n=1, this is a dot product, so in this sense we have a Generalized Inner Product Space.

Remarks:

1) X1, . . . , Xm are not independent since, for example, X3 = X1 ⊕ X2 (=a1 ⊕ a2)

2) We needed only n log(m) many random bits to choose a1, . . . , al. On the other hand, to choose
X1, . . . , Xm independently, we would need n · m many random bits.

Example #2 Linear Polynomial Space
Fix a finite field F . Without loss of generality, the elements of F are S = {0, 1, . . . , f − 1}. To
choose X0, . . . , Xf−1, pairwise independent, choose a, b ∈U F . Let Xi = a ∗ i + b, with * and +
being the field operations.

Claim: X0, . . . , Xf−1 are pairwise independent random variables.
Proof of Claim:

Fix i 6= j. Fix α, β.
Xi = α and Yj = β hold iff α = a ∗ i + b and β = a ∗ j + b,
and for every pair α, β there are unique values for a and b such that these hold.
Pr[Xi = α and Xj = β] = 1

f2 = 1
f · 1

f = Pr[Xi = α]Pr[Xj = β].
QED Proof of Claim

Note: The number of random bits used to choose a and b = 2 log2(f)
Homework 12: Generalize the above example to get k-wise independent X0, . . . , Xf−1.
Hint: degree k polynomials.

Example #3: Modulo Prime Space
This is a special case of Example #2 with F = GFp, p a prime.
Xi = a ∗ i + b(modp).
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33 Some Probability Review

33.1 Some Simple Definitions

Example 33.1 Let X be a {0,1}-value random variable, with Pr[X = 1] = p.
The expected value of X is

E[X] =
∑

i∈{0,1}
i · Pr[X = i]

= 1 · p + 0 · (1 − p) = p

The variance of X is

V ar(X) = E[(X − E[X])2]
= p(1 − p)2 + (1 − p)(0 − p)2 = p(1 − p)

The standard deviation of X is

σ =
√

V ar(X)

Homework 13. Let X be a {−1, 1}-valued random variable. Let p = Pr[X = 1]. Show the
following:

1. E[X] = 2p − 1

2. V ar(X) = 4p(p − 1)

3. V ar(X) ≤ 1
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33.2 Markov Inequality

If X is a nonnegative random variable and δ > 0, then

Pr[X ≥ δ] ≤ E[X]
δ

Proof:

E[X] ≥ δ · Pr[X ≥ δ] + 0 · Pr[X < δ]
≥ δ · Pr[X ≥ δ]

2

Homework 14. State and prove some general forms of Markov’s Inequality where X ≥ a (and
X ≤ a) instead of X ≥ 0.

33.3 Chebychev Inequality

Let X be a real-value random variable. Let δ ≥ 0. Then,

Pr [|X − E[X]| ≥ δ] ≤ V ar(X)
δ2

=
σ2

δ2

Proof:

Pr [|X − E[X]| ≥ δ] = Pr
[
(X − E[X])2 ≥ δ2

]
≤ E[(X − E[X])2]

δ2

≤ V ar(X)
δ2

2

33.4 Chernoff Bounds

Let X1, . . . , Xm be independent 0 − 1 valued random variables with, Pr[Xi = 1] = p.
Let 0 < δ < p(1 − p). Then,

Pr

[∣∣∣∣ 1n ∑
Xi − p

∣∣∣∣ ≥ δ

]
≤ 2e−

δ2n
2σ2

≤ 2(
e

δ2

2σ2

)n
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33.5 Pairwise Independent Sampling Theorem

Let X1, . . . , Xm be pairwise independent random variables with identical expected value µ and
variance σ2. Let 0 < δ. Then,

Pr

[∣∣∣∣
(

1
n

∑
Xi

)
− µ

∣∣∣∣ ≥ δ

]
≤ σ2

δ2n
=

(
σ2

δ2

)
· 1
n

Proof: Wlog we can take µ = 0, since otherwise we could replace Xi with Xi − µ. Apply
Chebychev Inequality to Y = 1

n

∑
Xi

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ δ

]
≤ V ar( 1

n

∑
Xi)

δ2

≤ E[( 1
n

∑
Xi)

2]
δ2

≤ E[(
∑

Xi)
2]

n2δ2

E[(
∑

Xi)
2
] = E[

∑
i

Xi
2 +

∑
i6=j

XiXj ]

= E[
∑

i

Xi
2] +

∑
i6=j

E[XiXj ]

= E[
∑

i

Xi
2] +

∑
i6=j

E[Xi] · E[Xj ]

=
∑

i

E[Xi
2] +

∑
i6=j

0 · 0

= n · σ2

Now we have,

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ δ

]
≤ nσ2

n2δ2
=

σ2

δ2n

2

Homework 15. Recall from Day 2 our proof that RP ( 1
n) = RP (1

2). Redo that proof with
pairwise independent sampling. Compare the amount of randomness and the number of samples
used now to that of the Day 2 proof.

34 Hidden Inner Product Bit

Definition 34.1 If u, v ∈ {0, 1}n, u = u1 . . . un, v = v1 . . . vn, then

u • v =
∑

uivi mod 2

55



Math 267a - Foundations of Cryptography Lecture #16: 19 February 1997

Definition 34.2 [Hidden Inner Product Bit] Let f : {0, 1}n −→ {0, 1}l(n) be a polynomial time
function ensemble. Let x ∈ {0, 1}n be the private input to f . Let z ∈ {0, 1}n be a public value.
The inner product bit of f w.r.t. z is x • z.

Let A = {0, 1}l(n) × {0, 1}n −→ {0, 1} be an adversary. The success rate of A is

δ(n) = Pr
X,Z

[A(f(X), Z) = X • Z] − Pr
X,Z

[A(f(X), Z) 6= X • Z]

= 2
(

Pr
X,Z

[A(f(X), Z) = X • Z] − 1
2

)

The time-success ratio of A is defined as usual.
The inner product bit is R(n) − secure iff every adversary has time-success ratio ≥ R(n)
The inner product bit is hidden if it is nc − secure for all c > 0.

Theorem 34.3 (Hidden-Bit Theorem) Suppose f : {0, 1}n −→ {0, 1}l(n) is a one-way func-
tion, then the inner product bit of f is hidden.

Proof: Given in the next lecture. 2

Homework 16. Give an example of an f for which the inner product bit is hidden but f is
not one-way. [Hint: Think “trivial”]

Corollary 34.4 Let f : {0, 1}n −→ {0, 1}n be a one-way permutation. Then g : (x, z) 7→
(f(x), z, x • z) is a pseudorandom number generator. g : {0, 1}2n −→ {0, 1}2n+1

Proof: It suffices to show g is next-bit-unpredictable. For i ≤ n, it is clearly impossible to
predict the ith bit from the previous bits, with a probability > 1

2 (since if x ∈U {0, 1} and given f
is a permutation, then f(x) ∈U {0, 1}n.)

Finally: the (2n + 1)th bit is unpredictable since it is the hidden inner product bit. 2
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35 More on Hidden Bits

Reminder of the definition of success probability δ(n) against “hidden bit”

δ(n) = Pr
X,Z

[A(f(X), Z) = X • Z] − Pr
X,Z

[A(f(X), Z) 6= X • Z]

Notation {−1, 1} representation of Boolean values
Let x ∈ {0, 1}. Define x = (−1)x = 1 − 2x (i.e. 0 = 1, 1 = −1).
Using this notation, we have x ⊕ y = x · y

Theorem 35.1 (Hidden Bit Theorem)
If f(x) is a one-way function then the inner product bit of f is hidden.

Lemma 35.2 (Hidden Bit Technical Lemma)
Let B : {0, 1}n → {0, 1} be a function ensemble with runtime TB(n).
Let Z ∈U {0, 1}n and let x ∈ {0, 1}n

Define δB
x := PrZ [B(Z) = x • Z] − PrZ [B(Z) 6= x • Z] = EZ [B(Z) · x • Z]

Then there is an oracle adversary SB which on input δ > 0 outputs a list L s.t. ∀x ∈ {0, 1}n

δB
x ≥ δ ⇒ Pr[x ∈ L] ≥ 1

2 and the running time of SB is nO(1)TB(n)/δ2.

Proof: (of Technical Lemma)
Let A(−,−) be an adversary against the inner product bit of f . A has runtime T (n) and success

probability δ(n) We want to construct an adversary of f .

Define δA
x := EZ [A(f(x), Z) · x • Z] (which gives the following identity EX [δA

x ] = δ(n))

By Markov’s inequality and the fact that δA
x ≤ 1, we have

Pr
X

[δA
x ≥ δ(n)

2
] ≥ δ(n)

2

Let By be the mapping z 7→ A(y, z). The following is an algorithm for an oracle Af against f .
It accepts as input y = f(x) and attempts to find f−1(y).
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1. Run SBy

(
δ(n)

2

)
from the technical lemma

2. Check to see if there exists an x′ on the list output by step 1 that satisfies f(x′) = y. If so,
then output x′. Otherwise algorithm fails.

Runtime of Af is approximately the same as runtime of SBy = nO(1)T (n)/δ(n)2

Success probability of Af (over random values of x) ≥ δ(n)
2 · 1

2 = δ(n)
4

Time-success ratio of Af nO(1)T (n)/δ(n)3 2

Describe SB’s algorithm

Assume δB
x > δ and let x ∈ {0, 1}n

Let ei = (
i−1︷ ︸︸ ︷

0, . . . , 0, 1,

n−i︷ ︸︸ ︷
0, . . . , 0) ∈ {0, 1}n

Let µi = δB
x · xi =

{
δB
x if xi = 0
−δB

x if xi = 1
where xi is the ith bit of x.

In order to find x, we need to find all of the xi’s, which is equivalent to finding the signs of the
µi’s. We begin by fixing i.

δB
x = EZ [B(Z) · (x • Z)] = EZ [B(ei ⊕ Z) · (x • (ei ⊕ Z)]

x • (ei ⊕ Z) = (x • ei) ⊕ (x • Z) = (x • ei) · (x • Z) = xi · (x • Z)

Therefore δB
x = xi · EZ [B(ei ⊕ Z)(x • Z)] and µi = EZ [B(ei ⊕ Z)(x • Z)]

We’ll estimate the values µi by sampling values T1, . . . , Tm for Z and averaging. T1, . . . , Tm are
choosen pairwise independent with the generalized Inner Product Construction.

Let m = d2n/δ2e and l = dlog2(m + 1)e
Choose A ∈U {0, 1}n×l (ie. A is an (n × l) matrix)
Set Tj = A • [j] where [j] is the column l-vector with binary representation of j

Claim 2 Let Yi = 1
m

∑m
j=1 B(ei ⊕ Tj)(x • Tj)

Then |Yi − µi| < 1
δ with probability > 1 − 1

2n

Proof: By pairwise independent sampling,

Pr[|Yi − µi| ≥ 1
δ
] ≤ σ2

δ2m
≤ σ2

δ2 2n
δ2

=
σ2

2n
≤ 1

2n

The last inequality is true since σ2 ≤ 1 by a previous homework assignment. 2
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Let bit(Yi) =
{

1 if Yi < 0
0 if Yi ≥ 0

This is the value of xi predicted by Yi.

Claim 3 bit(Yi) = xi for i = 1, . . . , n with probability ≥ 1
2

Proof: By the previous claim, the probability that something goes wrong with the ith bit is less
than 1

2n . Since there are n bits, the probability that something goes wrong with at least one bit is
less than n

2n = 1
2 and the claim follows. 2

The only problem is that Yi seems to depend on x! So how do we actually compute Yi without
knowing x? Here’s how: treat x as a row vector and Tj as a column vector. We then have

Yi =
1
m

m∑
j=1

B(ei ⊕ Tj) · (x • A) • [j]

Notice that we don’t need to know x, we just need to know B = x • A ∈ {0, 1}l. Now try all
possible values of B, with the correct value of B yielding the proper values for the Yi’s.

Algorithm for SB (with input δ)

1. Let m = d2n/δ2e and l = dlog2(m + 1)e
2. Choose A ∈U {0, 1}n×l

3. Let Tj = A • [j] for j = 1, . . . , n

4. For each B ∈ {0, 1}l and i = 1, . . . , n
Let Yi = 1

m

∑m
j=1 B(ei ⊕ Tj) · B • [j] and xB

i = bit(Y B
i )

Append (xB
1 · · ·xB

n) to the output list

Finally, the runtime of SB is

m + 2lnTB(n) ≈ m · n · TB(n) =
2nTB(n)

δ2
=

nO(1)TB(n)
δ2
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36 Many Hidden Bits

Definition 36.1 Let r ≥ 1 ∈ Z (r = r(n)). Let

f : {0, 1}n −→ {0, 1}l(n)

be a P-time function ensemble with x ∈ {0, 1}n private, and z ∈ {0, 1}n×r public. z is a (n × r
matrix over Z2. Let r inner product bits of f(x) with respect to z is the vector x • z

Definition 36.2 The success probablility of an adversary A : {0, 1}l(n) × {0, 1}n×r −→ {0, 1}r is
defined by δ(n) = PrX,Z [f(A(f(X), Z)) = X • Z] − 2−r. (2−r is the random guess probability)

Definition 36.3 The r-inner product bits are S(n) secure if every adversary A has time-success
ratio ≥ S(n). The r-inner product bits are hidden if they are nc secure for all c ≥ 0

Theorem 36.4 If there is a one way function then the r-inner product bits are hidden.

Proof: We’ll reduce to the case of one hidden bit i.e. we’ll show that if the r-inner product bits
are not hidden then 1-inner product bit is not hidden.

Let A be an adversary against the r-inner product bits. Let the success probability of A be
denoted δ(n) and the run time be denoted T (n). We’ll construct an adversary SA against a single
inner product bit. [We know from a previous theorem that if f is a one-way function then its inner
product bit is hidden]

The Algoithm for SA is as follows:

Input u = f(x) ∈ {0, 1}l(n), y ∈ {0, 1}n. The Goal is to output x • y, one inner product
bit.

Algorithm

1)Choose i ∈U {0, 1}r − 0r.
2)Let l be the least value such that the lth bit of the binary representation
of i is 6= 0 i.e il = 1.
3)Choose z ∈U {0, 1}n×r

4)Modify column l of z to get the matrix z′ such that z′ • i = y. z′ is
determined uniquely by z, y, i.
5)Output A(u, z′) • i
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We hope this works since we hope that A(U, Z ′) = A • Z ′ and thus A(U, Z ′) • i =
X • (Z ′ • i) = X • Y .

The Run time of SA = T (n) + nO(1) ≈ T (n). The success probability of SA is

a. with probability ≥ δ(n) + 2−r A(u, z′) = x • z′ and the correct bit is output

b. if A(u, z′) 6= x • z′ then we have A(u, z′) • i instead of (x • z′) • i and we hope this
is correct half of the time.
Note that A(u, z′) • i = (x • z′) • i if and only if [A(u, z′) − (x • z′)] • i = 0.
For J ∈ {0, 1}r, (we allow J = 0r) PrJ [A(u, z′) − x • z′) • J = 0] = 1/2, so
PrI∈{0,1}r−0r [(A(u, z′) − x • z′) bulletI = 0] = (2r−1 − 1)/(2r − 1).

From a), b) the probability that SA is correct is

≥ (δ(n) + 2−r) × 1 + (1 − (δ(n) + 2−r))[(2r−1 − 1)/(2r − 1)] = 1/2 + δ(n)/2

.

So, the success probability of SA is 2[Pr(A outputs the correct answer) - 1/2] ≥ δ(n).
So SA has the same success probability as A. So the time success probability of SA is
the time success ratio of A.

QED.

2

Example 36.5 For some concrete one way functions.
The low order i.e. log(log(n)) bits of the function X 7→ X2 (mod pq) are hidden.
The low order bits i.e. log(log(n)) bits of RSA function are hidden asuuming the RSA is

one-way.
In both cases these bits can be used to generate pseudorandom values by iterating the one-way

functions.
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37 Statistical Distinguishability of Distributions

Definition: Let Dn and En be probability distributions on {0, 1}n. The statistical distance between
Dn and En is

dist(Dn, En) =
1
2

∑
α∈{0,1}n

∣∣∣∣Pr
X

[X = α] − Pr
Y

[Y = α]
∣∣∣∣

where X ∈Dn {0, 1}n and Y ∈En {0, 1}n. Equivalently,

dist(Dn, En) = max
S⊂{0,1}n

(
Pr
X

[X ∈ S] − Pr
Y

[Y ∈ S]
)

for the same X and Y . A third equivalent formula is the following. Let t : {0, 1}n → {0, 1} and
put δt(Dn, En) = |PrX [t(X) = 1] − PrY [t(Y ) = 1]|. Then

dist(Dn, En) = max
t

δt(Dn, En)

Homework 17: Prove that these definitions are equivalent. Also, prove that the statistical
distance is a metric.

Definition: Dn and En are ε-statistically indistinguishable iff dist(Dn, En) ≤ ε.

38 Computational Indistinguishability of Distributions

Let Dn,En be P -samplable distributions on {0, 1}l(n), i.e.,

Dn : {0, 1}r(n) → {0, 1}l(n)

En : {0, 1}s(n) → {0, 1}l(n)

are P -time computable. Put Dn = Dn(Ur(n)) and En = En(Us(n)), where Ur(n) and Us(n) are
uniformly chosen random variables of the appropriate length. An adversary for distinguishing Dn

and En, A : {0, 1}l(n) → {0, 1}, has success rate

δn =
∣∣∣∣Pr

X
[A(X) = 1] − Pr

Y
[A(Y ) = 1]

∣∣∣∣
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where again X ∈Dn {0, 1}n and Y ∈En {0, 1}n.
Definition: Dn and En are S(n)-secure computationally indistinguishable iff every adver-

sary A has time-success ration ≥ S(n), and are computationally indistinguishable iff they are
nc-computationally indistinguishable for every c > 0.

Remark: If Dn and En are ε-statistically indistinguishable, then δn ≤ ε and T (n) ≥ 1, so Dn

and En are 1/ε-computationally indistinguishable.
Example: Let f : {0, 1}n → {0, 1}l(n) be a PRNG. Then f(Un) and Ul(n) are computationally

indistinguishable. This is immediate from the definitions.

39 Strengthening the Hidden-Bit Theorems

Theorem: Let f : {0, 1}n → {0, 1}l(n) be a one-way function. Let Z ∈U {0, 1}n×r and B ∈U
{0, 1}r. Then the distributions

Dn = 〈f(X), X · Z, Z〉 and En = 〈f(X), B, Z〉
are computationally indistinguishable, provided r = O(log n).

Proof: Suppose A is an adversary distinguishing Dn and En with success rate Dn and runtime
T (n). We will construct an adversary SA for determining the r-inner product bits of f .

SA takes as input Y = f(X) and Z ∈ {0, 1}n×r; its goal is to output X · Z. The algorithm
proceeds as follows:

1. Choose U, V ∈U {0, 1}r.

2. If A(Y, U, Z) = 1 then output U ; otherwise output V .

The runtime of SA is approximately equal to T (n), and the success probability is

Pr
X,Z

[SA(f(X), Z) outputs the correct answer]

= Pr[A(f(X), U, Z) = 1] · Pr[U = X · Z | A(f(X), U, Z) = 1]
+ (1 − Pr[A(f(X), U, Z) = 1]︸ ︷︷ ︸

β

) · Pr[V = X · Z]

By Bayes’ Formula, this becomes

Pr[U = X · Z] · Pr[A(f(X), U, Z) = 1 | U = X · Z] + (1 − β) · 2−r

= 2−r · Pr[A(f(X), X · Z, Z) = 1]︸ ︷︷ ︸
α

+ (1 − β) · 2−r

By definition of δ we can assume w.o.l.o.g. α − β > δ(n), so the last formula reduces to

2−r(α + 1 − β) ≥ 2−r(δ(n) + 1)

Therefore the success rate of SA is ≥ δ(n)/2r, and the time-success ratio is ≤ 2r · T (n)/δ(n) =
nO(1) ·T (n)/δ(n) since r = O(log n). This makes SA too strong an adversary against inner-product
bits, a contradiction.
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40 A Version of the Triangle Inequality

Theorem: Let D1
n, D2

n, D3
n be probability distributions on {0, 1}n. Let D1

n and D2
n be S12(n)-

computationally indistinguishable and let D2
n and D3

n be S23(n)-computationally indistinguishable.
Let

S13 =
1

1
S12

+ 1
S23

(
≥ min(S12, S23)

2

)

Then D1
n and D3

n are S13(n)-computationally indistinguishable.
Homework 19: Prove this theorem.
Corollary: If the pairs D1

n, D2
n and D2

n, D3
n are computationally indistinguishable, then so is

the pair D1
n, D3

n.
Theorem: Let Dn and En be computationally indistinguishable and P -samplable. Let k(n) be

a polynomial and

Dk(n)
n = Dn ×Dn × · · · × Dn︸ ︷︷ ︸

k(n) copies

Define Ek(n)
n likewise. Then Dk(n)

n and Ek(n)
n are computationally indistinguishable.

Homework 20: Prove this theorem. (Hint: Recall the proof of the stretching theorem for
PRNG’s.)

41 Entropy and Information

Let Dn be a probability distribution on {0, 1}n and X ∈Dn {0, 1}n. We want to answer the following
question: if we receive a sequence of values for X, how much information (approximately mesaured
in bits) is conveyed by a particular value for X? Intuitively, if Dn 6= Un, then we receive more
information from less likely events. Also, we want to use shorter strings to represent more likely
events.

Example: If you hear on the radio that traffic is flowing smoothly on the I-5, you don’t learn
very much because this is the normal situation. On the other hand, you receive quite a lot more
information from hearing that a truck has overturned and there’s cream of mushroom soup all over
the freeway. Also, the radio announcer is likely to spend more time discussing the spilled soup
than she would spend if there had been no accident.

Definition: Let α ∈ {0, 1}n be a possible value for X. Then

informDn(α) = − log
(

Pr
X

[X = α]
)

where the logarithm is taken with base 2.
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42 Information and Entropy

Information in the sense of resolving uncertainty.
Applications: Design communication systems which optimize channel capacity/bandwidth.

Example 42.1 Morse Code
Language with 3 symbols: dot, dash, pause.
Design principle used by Morse - “shorter codes for more common symbols”

Example 42.2 Spoken English
Design principle observed - “more commonly used words tend to be shorter”

Let Dn be a distribution on {0, 1}n where {0, 1} is the set of ’symbols’. Let X ∈Dn {0, 1}n

Notation: Logarithms used in this lecture are always base two unless explicitly indicated otherwise.

Definition 42.3 Shannon information of α ∈ {0, 1}n

informDn(α) = log
(

1
PrX [X = α]

)
= − log(Pr

X
[X = α])

Definition 42.4 The entropy of Dn is

ent(Dn) = EX [informDn(X)]

=
∑

α∈{0,1}n

Pr
X

[X = α] · log
(

1
PrX [X = α]

)

= −
∑

α∈{0,1}n

Pr
X

[X = α] · log(Pr
X

[X = α])

ent(X) = ent(Dn)
Convention: 0 · log

(
1
0

)
= 0 · log 0 = 0
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Example 42.5

ent(Un) = 2n · 1
2n

· log

(
1
1
2n

)
= n

Example 42.6
Let Pr[X = 0n] = 1

2 and Pr[X = 1u] = 1
2n for u ∈ {0, 1}n−1

ent(X) =
1
2

log 2 + 2n−1

(
1
2n

)
log 2n

=
1
2
· 1 +

1
2
· n

=
n + 1

2

Definition 42.7 Let f : {0, 1}n → {0, 1}∗ where {0, 1}∗ =
⋃

i≥0{0, 1}i

We say f is prefix-free iff for all x, y ∈ {0, 1}n x 6= y, f(x) is not a prefix of f(y).

We look for prefix-free encodings to transmit symbols. In the last example the encoding f(0n) =
0 and f(1u) = 1u would work well.

Theorem 42.8 ent(Dn) ≤ n
Proof:

ent(Dn) − n =
∑
α

Pr[X = α] · (− log(Pr[X = α]) − n)

=
∑
α

Pr[X = α] · log
(

1
Pr[X = α] · 2n

)

≤ (log e)
∑
α

Pr[X = α] ·
(

1
Pr[X = α] · 2n

− 1
)

≤ (log e)
∑
α

(
1
2n

− Pr[X = α]
)

≤ (log e) · (1 − 1) = 0

We use the inequality log(E) ≤ (log e)(E − 1) above. 2

Homework 20. Suppose that X and Y are independent random variables and let Z = 〈X, Y 〉.
ent(Z) = ent(X) + ent(Y )
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Definition 42.9 (Information Divergence) Let X and Y be random variables on {0, 1}n. The
information divergence of Y w.r.t. X is

∑
α∈{0,1}n

Pr
X

[X = α] · log
(

PrX [X = α]
PrY [Y = α]

)

This is equal to, ∑
α

Pr
X

[X = α] · (informY (α) − informX(α))

Theorem 42.10 (Kullback - Liebler Inequality) The information divergence of Y w.r.t. X
is ≥ 0

Proof:
The information divergence of Y w.r.t. X is

= −
∑

α∈{0,1}n

Pr
X

[X = α] · log
(

PrY [Y = α]
PrX [X = α]

)

≥ −(log e)
∑

α∈{0,1}n

Pr
X

[X = α] ·
(

PrY [Y = α]
PrX [X = α]

− 1
)

≥ −(log e)
∑

α∈{0,1}n

(Pr
Y

[Y = α] − Pr
X

[X = α])

≥ − log e · (1 − 1) = 0

2

Theorem 42.11 Let X and Y be (not necessarily independent) random variables. Let Z = (X, Y )

ent(Z) ≤ ent(X) + ent(Y )

Proof: Let X ′ and Y ′ be independent random variables with the same distributions as X and
Y respectively.
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ent(Z) = −
∑
α,β

Pr[X = α ∧ Y = β] · log (Pr[X = α ∧ Y = β])

≤ −
∑
α,β

Pr[X = α ∧ Y = β] · log(Pr[X ′ = α ∧ Y ′ = β]) -by Kullback-Liebler inequality

≤ −
∑
α,β

Pr[X = α ∧ Y = β] · log (Pr[X = α] · Pr[Y = β])

≤ −
∑
α,β

Pr[X = α ∧ Y = β] · (log(Pr[X = α]) + log(Pr[Y = β]))

≤ −
∑
α,β

Pr[Y = β|X = α] · Pr[X = α] · log(Pr[X = α])

−
∑
α,β

Pr[X = α|Y = β] · Pr[Y = β] · log(Pr[Y = β])

≤ −
∑
α


∑

β

Pr[Y = β|X = α]


 · Pr[X = α] · log(Pr[X = α])

−
∑
β

(∑
α

Pr[X = α|Y = β]

)
· Pr[Y = β] · log(Pr[Y = β])

≤ 1 · ent(X) + 1 · ent(Y )
≤ ent(X) + ent(Y )

2
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43 Prefix-free codes

Recall: A prefix-free code is a function f : {0, 1}n −→ {0, 1}∗ such that if x 6= y, then f(x) is not
a prefix of f(y). Our measure of efficiency of a prefix-free code is EX [|f(X)|] where |f(X)| is the
number of bits of f(X). The lower this number is, the better.

Theorem 43.1 (Kraft inequality) Let f be prefix-free. Then∑
x∈{0,1}n

2−|f(x)| ≤ 1.

Proof: Let l = max{|f(x)| : x ∈ {0, 1}n}. For each x, consider the set of y ∈ {0, 1}l such
that f(x) is a prefix of y. This set is 1

2|f(x)| of the set {0, 1}l. Moreover, for distinct x the sets are
disjoint. Thus summing 1

2|f(x)| over all x gives a number no larger than 1. 2

Theorem 43.2 Let f be prefix-free, and X ∈D {0, 1}n where D is some probability distribution.
Then

EX [|f(X)|] ≥ ent(X).

Proof: Let Y ∈E {0, 1}n ∪ {λ} be such that PrY [Y = α] = 2−|f(α)| for α ∈ {0, 1}n. Then the
Kraft inequality gives that

PrY [Y = λ] = 1 −
∑
α

2−|f(α)| ≥ 0.

We want to show that EX [|f(X)|] − ent(X) ≥ 0. But

EX [|f(X)|] − ent(X) =
∑
α

PrX [X = α](|f(α)| + log(PrX [X = α]))

=
∑
α

PrX [X = α]log(
PrX [X = α]

2−|f(α)| )

=
∑
α

PrX [X = α]log(
PrX [X = α]
PrY [Y = α]

).

But this last sum is ≥ 0 by the Kullback-Liebler theorem. 2
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44 Huffman codes

Intuitively, one might hope for a prefix-free code with EX [|f(X)|] ≤ ent(X) + 1, which would put
the expected number of bits close to within rounding error of the entropy. This is achieved by
Huffman codes.

Set-up: Consider a finite set S = {S1, S2, ...Sm} with X ∈ S a random variable. Let p1, p2, ..., pm

be pi = PrX [X = Si] where p1 ≥ p2 ≥ ... ≥ pm > 0. We will define the Huffman encoding
function f inductively. For m = 2, let f(S1) = 0 and f(S2) = 1. If m ≥ 3, form a set S′ =
{S1, S2, ..., Sm−2, {Sm−1Sm}} by combining Sm−1 and Sm into a single element. Let p′i = pi =
PrY [Y = S′

i] if 1 ≤ i < m − 1, and p′m−1 = pm−1 + pm = PrY [Y = S′
m−1]. Note that S′ may need

to be reordered to achieve p′1 ≥ p′2 ≥ ... ≥ p′m−1. Inductively, find the Huffman encoding function
f ′ on S′. Then define the Huffman encoding function f on S by

f(Si) = f ′(Si) if 1 ≤ i < m − 1
f(Sm−1) = f ′({Sm−1Sm})0

f(Sm) = f ′({Sm−1Sm})1.

Example 44.1 Let S = {1, 2, 3, 4, 5} with the probabilities given in the table below. Form the

tree by iterating the process of combining the two lowest probabilities.

5

4

3

2

1

x

0.05

0.1

0.25

0.3

0.3

Pr[X = x]

©©©
HHH

XXXXXXXX

©©©
HHH

©©©
©©©©©©

PPPPPPPPPPPP

0.15

0.6

0.4

1.0

1

0

1

0

1

0
1

0

The Huffman code is then found by reading the tree from the root to the appropriate leaf. Thus
f(1) = 00, f(2) = 01, f(3) = 10, f(4) = 110, f(5) = 111. This is a prefix-free code by design. In
addition, it assigns the longest codes to the least common events.

Theorem 44.2 If f is a Huffman coding of a probability distribution on {0, 1}n, then EX [|f(X)|] ≤
ent(X) + 1.
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Homework 21. Prove the previous theorem. Hint: Suppose more than one event has nonzero
probability. Show that EX [|f(X)|] ≤ ent(X) + 1 − 2 · minα{PrX [X = α]}. Use induction on the
construction of the Huffman encoding.

Homework 22 Show that the Huffman codes are optimal prefix-free codes.

An alternative to the hint for the first homework above, is that one can first show that there
is a prefix-free encoding which has the property that |f(x)| = dent(x)e for all x. This enoding has
the property that EX [|f(X)|] ≤ ent(X) + 1. Finally, one can use the second homework to show
that Huffman encodings also have this property.
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45 PRNG’s from One-Way Functions

Recall that a pseudorandom number generator (PRNG) can be constructed from a one-way permu-
tation by adding hidden bits on the end of the outputs of the one-way function. For this, it has been
seen that bijectiveness of the one-way function is crucial. A PRNG can also be constructed from a
one-way function, via pseudoentropy and false entropy generators. Here these new generators are
described, followed by an overview of the construction of a PRNG from a one-way function.

Definition: A function f : {0, 1}n → {0, 1}l(n) is a S(n)-secure pseudoentropy generator with
pseudoentropy p(n) provided f(Un) has S(n)-secure pseudoentropy ≥ n + p(n).

Recall that Un is the uniform distribution, which has entropy n. It is a general fact that
if h is a function, and a distribution D has entropy ent(D), then h(D) has entropy ≤ ent(D).
Therefore f(Un) cannot have true entropy n + p(n); however f(Un) may be indistinguishable from
a distribution on {0, 1}l(n) with entropy ≥ n + p(n) - in this case f is a pseudoentropy generator.

Definition: A function f : {0, 1}n → {0, 1}l(n) is a S(n)-secure false entropy generator with
false entropy p(n) provided f(Un) had S(n)-secure pseudoentropy ≥ ent(f(Un)) + p(n).

Since ent(f(Un)) ≤ ent(Un), It follows from the definitions that a pseudoentropy generator is
also a false entropy generator. Now we outline a construction by H̊astad, Impagliazzo, Levin, and
Luby of a PRNG from a one-way function.

one-way function ⇒ false entropy generator

⇒ pseudoentropy generator

⇒ pseudorandom number generator

Our outline will combine the last two steps, and produce a PRNG from a false entropy generator.

(one-way function ⇒ false entropy generator)
Let f be a one-way function (x 7→ f(x)). Then we may construct a function g for which

g(x, z) = 〈f(x), x • z, z〉, which is indistinguishable from 〈f(x), b, z〉, where b consists of “random”
bits. (Here, z is a matrix of appropriate size for the dot product.)

Now, we can break z by columns into z1 and z2, alter the function g so that g(x, z1, z2) =
〈f(x), x • z1, x • z2, z1, z2〉, and by choosing the correct splitting of z, we nearly have injectivity for
the mapping (x, z1) 7→ 〈f(x), x • z, z1〉. This approximation to one-to-one behavior and the extra
hidden bits (almost random bits) give the false entropy.
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(false entropy generator ⇒ pseudorandom number generator)
Let g be a false entropy generator, with x 7→ g(x), where we may think of x as being the

(x, z1, z2) in the previous paragraph. Now construct the function

h(x, z1, z2) =
〈
gk(n) • z1, x • z2, z1, z2

〉
,

where z1, and z2 are matrices of appropriate size; furthermore,

x = x1x2 · · ·xk(n), and

gk(n)(x) = g(x1)g(x2) · · · g(xn),

and z1 is large enough to obscure the values of g. The claim which will be left unproven here is
that h is a PRNG.

From a previous homework, we already have that a one-way function can be constructed from
a PRNG; thus one-way functions exist ⇔ PRNG’s exist. Note that we have candidates for each
type, but can’t prove their respective memberships.

46 Hash Functions and One-Way Hash Functions

Definition: Let hy(x) = h(y, x), and let Y ∈U {0, 1}l(n), and X ∈U {0, 1}n. A function
h : {0, 1}l(n) × {0, 1}n → {0, 1}m(n) (where in general, m(n) < n) is a Universal Hash Function
provided:

1. For all x ∈ {0, 1}n, and for all α ∈ {0, 1}m(n),

PrY [hY (x) = α] =
1

2m(n)
.

(We can think of this condition as the hash function sending domain elements to all range
elements with equal probability.)

2. For all x1, x2 ∈U {0, 1}n, and for all α1, α2 ∈ {0, 1}m(n), where x1 6= x2,

PrY [hY (x1) = α1 ∧ hY (x2) = α2] =
1

22m(n)
.

(We can think of this condition as pairwise independence of the hashings of x1 and x2.)

Intuitively, a hash function maps a large set to a small set in an essentially random fashion; however,
it is usually desired to have the portion of the domain that is actually used at any given point in
time to be relatively small compared to the range set.

Example. Consider the generalized inner product. View x as a row n-vector, and y as a
(n + 1) × m(n) matrix. In the language of the definition we have l(n) = (n + 1) · m(n). Let
hy(x) = 〈x, 1〉 · y. Then h is a universal hash function.

Definition: A hashing collision occurs if x1 6= x2 and hy(x1) = hy(x2).
What follows now is a loose definition of one-way hash functions and universal one-way hash

functions; one-way hash functions must be resistant to both attacks against their one-way character
and to collisions.
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Figure 1: Representation of a hash function, h with parameter y ∈ {0, 1}l(n).

Definition: A (universal) one-way hash function, h, is a (universal) hash function which is
secure against the following types of attacks:

1. the “one-wayness” attack:
Let X ∈U {0, 1}n, Y ∈U {0, 1}l(n). Then h must be secure against an adversary A against its
one-way character; i.e. we require

PrX,Y [hY (A(hY (X), Y )) = hY (X)]

to be sufficiently small, where the parameter Y is publicly known.

2. the “birthday” attack:
Let Y ∈U {0, 1}l(n). Given an adversary A against collisions of the hash function, we must
have the probability that an adversary A′ discovers a collision; i.e.,

PrY [A′(Y ) = 〈x1, x2〉 : x1 6= x2 and hy(x1) = hy(x2)]

is sufficiently small for the desired security parameter (usually S(n)).

Applications: Let h : {0, 1}∗ → {0, 1}n be a hash function.

1. message verification or message digest:
Alice, sending a message m, computes the hash value σ = h(m) and sends both. Bob can
tell from the pair (m, σ) whether m has been corrupted, assuming σ has not been corrupted.

2. message registration:
Alice wants to keep m private but later be able to prove she knew m. Alice computes σ = h(m)
and publishes σ, perhaps in a classified ad in the New York Times. Later anyone given m can
verify that h(m) = σ and Alice knew m. An example of this is the patent application process,
where it is desired to keep the patent information secret, while giving proof of knowledge of
the patent information, for instance by using a standard widely-accepted hash function.
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47 Applications of Hash Functions

Let h : {0, 1}∗ −→ {0, 1}n be a hash function (not 1-1 but hard to invert)

Recall: Attacks on Hash Functions

1. Passive attacks: Alice chooses the message m and computes its hash value h(m). Eve only
gets h(m) and tries to find m′ such that h(m′) = h(m).

2. Birthday attacks: Eve tries to find a general m and m′ such that m 6= m′ and h(m) = h(m′).
One use for this would be that Eve could sign a message m and later claim that she signed the
message m′ instead.

Application I: Message Verification
Alice sends Bob a message m and σ = h(m), the hash function value. Bob can tell from (m, σ)

that m has not been corrupted, assuming that σ has not been corrupted.

Application II: Message Registration
Alice needs to keep m private, but later needs to be able to prove that she knew m. Thus, Alice

computes and publishes σ = h(m) in the New York Times. Later, anyone, given m, can verify that
h(m) = σ and that Alice knew m before.

Application III: Message Signatures
Alice has a public key z and a private key x with the associated encryption/decryption function.

Alice wants to send a message m to Bob in such a way that Bob is sure that it came from Alice.
Alice computes σ = Ex(h(m)), and sends m and σ to Bob. (This transaction may be intercepted
by Eve.) Bob, using the public key of Alice, computes Ez(σ) and checks that this is equal to h(m).
Since σ has been computed with Alice’s private key, Bob can be sure that Alice wrote the message.

Application IV: Verisign Application
Alice writes a program m for internet distribution. She computes σ = Ex(h(m)) and registers

σ and the public key z with a trusted certificate manager. (ie. Verisign could be the certificate
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manager and Microsoft could be Alice.) She posts σ and m on the internet. Bob downloads σ and
m, and checks that Ez(σ) = h(m), obtaining z from Verisign. He then can run m without fear of
malicious programs.

48 Birthday Attack Success Probability

Eve is trying to find a general m and m′ such that m 6= m′ and h(m) = h(m′). Eve might pick a
random x1, x2, x3, . . . until she finds a duplicate h(xi) value. What is her chance of success after
picking x1, . . . , xk?

Remark: For passive attacks, Eve, given σ, expects to try about k = 2n

2 many xi’s before she
succeeds with non-negligible probability.

The birthday attack has a much better success probability. Let us assume that h is a random
function.

Prob[ Eve fails ]
≤ Prob[h(x1) 6= h(x2) and h(x3) /∈ {h(x1), h(x2)}

and h(x4) /∈ {h(x1), h(x2), h(x3)}
and . . . and h(xk) /∈ {h(x1), . . . , h(xk−1)}]

≤ (1 − 1
2n

)(1 − 2
2n

)(1 − 3
2n

) . . . (1 − k − 1
2n

) = α

Now,

ln(α) = ln(1 − 1
2n

) + ln(1 − 2
2n

) + . . . + ln(1 − k − 1
2n

)

≤ − 1
2n

− 2
2n

− . . . − k − 1
2n

since ln(x) ≤ x − 1

= −(k − 1)k
2 · 2n

Thus,

ln(α) / −1
2

=⇒ α ≤ e−
1
2 ≈ .6065

So Eve would succeed with probability ≥ 1− .607 = .393 after
√

2n = 2n/2 trials. This is a lot less
work than she would need for a passive attack.

It would be to Eve’s advantage to do this because if Eve, for instance, generates good contracts
g1, g2, g3, . . . and bad contracts b1, b2, b3, . . ., until she finds a bi and a gj such that h(bi) = h(gj),
she could then ask Alice to sign gj . Alice would then give back Ex(h(gj)), but then Eve could
convince Bob that Alice really signed bi, since Ex(h(bi)) = Ex(h(gj)).
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49 Thwarting the birthday attack

The birthday attack described in the previous lecture can often be foiled by adding a random string
as padding to the message before using the hash function.

As an example, consider the case where Alice and Bob are communicating with each other in
order to sign a contract. To sign the contract, they will jointly compute the hash function applied
to the message and then each will encrypt the hash function with their private key. However, Alice
and Bob do not trust each other completely and each wants to be sure that the other one is not
using a birthday attack. The protocol that Alice and Bob follows is:

1. Alice and Bob jointly agree on a contract c. We presume the contract is coded as a string of
bits, so c ∈ {0, 1}∗.

2. Alice chooses a random string uA ∈ {0, 1}p and Bob chooses a random string uB ∈ {0, 1}∗
where p is a modestly large integer. They reveal their random strings to each other, nearly
simultaneously.

3. Alice and Bob concatenate these to form the message m = cuAuB. They compute h(m) where
h is a hash function.

4. Alice and Bob both sign the message: Alice computes ExA(h(m)) and Bob computes ExB(h(m)).
They exchange these two values and use them as signatures. (Here xA and xB are the private
keys of Alice and Bob.)

Alice feels secure that Bob was not able to secretly produce a corrupted, bad contract with
the same hash value as the agreed upon contract, since Bob is unable to start a birthday attack
until he knows Alice’s random string uA. (Note that it behooves Alice to require Bob to reveal
his random string at the same time, or nearly the same time, as she reveals her, since otherwise
Bob has a chance to mount a birthday attack after Alice reveals her key and before Bob reveals
his.) The situation is symmetric for Bob, who likewise feels secure that Alice has not been able to
mount a birthday attack against him.
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50 Blinded signatures

50.1 The dangers of signing gibberish (that is, random messages).

We now consider the sitation where Bob has a public and private key cryptosystem based on RSA.
Recall that this means Bob has a private key x = 〈p, q, d〉 and a public key z = 〈e, n〉 where pq = n.
Bob’s private encryption/decryption function is

Ex(m) = md mod n.

and his public encryption/decryption function is

Ez(m) = me mod n.

In this section, we define Bob’s signature of a message m to be the value Ex(m); in particular, Bob
is not signing the hash of a message, he is signing the actual message.

We now suppose that Bob is willing to sign gibberish messages: we’ll demonstrate that this is
as dangerous an act as signing a blank check or a blank sheet of paper. (Anecdote: in the previous
day’s paper was a story describing two accused murderers in Phildelphia who claimed that the
police had induced them to sign blank sheets of paper and then typed confessions above their
signature. Their trial ended on the day of this lecture with their acquital, reportedly due to lack
of physical evidence connecting them to the crime.)

Returning the cryptographic situation, we suppose Eve has heard about Bob’s willingness to
sign gibberish messages. She then uses the following scheme to obtains Bob’s signature on a
message m of her choosing:

1. Eve chooses a random k ∈ Z∗
m. She forms g = mke mod n.

2. Eve asks Bob to sign g. Bob complies as it appears to be gibberish and returns the value Ex(g)
to Eve.

3. Eve then computes k−1 mod n using Euclid’s algorithm and the fact that n and k are relatively
prime. She then computes

Ex(g) · k−1 mod n = md · ked · k−1 mod n

= md mod n

= Ex(m)

The second equality above holds since the order of Z∗
n is ed − 1, so ked ≡ k mod n.

Eve now has the value of Ex(m) which is message m signed using Bob’s private key.

It remains to justify the fact that Bob was willing to sign the message g = mke. Since k was
chosen uniformly at random from Z∗

n, then ke is also uniformly randomly distributed from Z∗
n.

Therefore, since gcd(m, n) = 1, the value of g is independent of m and is uniformly distributed in Z∗
n.

Therefore the message g, being completely random, will most likely consist of just “gibberish”.
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50.2 Blinded signatures

The above construction showed the danger of signing random messages or “gibberish”. However,
from a different point of view, we can think of g as being a blinded form of m: what we mean by
this is that knowledge of g gives no information about m to anyone except Eve, since only Eve
knows the value of k. This allows Bob to offer blindfolded signatures as a service: that is to say,
Bob may wish to agree that he will sign any message m without being able to see the contents of
message m.

To give a physical analogue, suppose Eve wants Bob to sign message m. We can think of her
inserting the message m written on a piece of ordinary paper into an envelope along with a slip of
carbon paper (this is analogous to her blinding the message by multiplying by ke). She then lets
Bob sign on the outside of the envelope with a stylus; the carbon paper transfers the signature to
the blinded message inside (this is analogous to Bob signing the blinded massage). Then, away
from the presence of Bob, Eve can remove the message from the envelope (this corresponds to
unblinding by multiplying by k). In this way, Bob has signed a message, but has no information
about what he has signed.

A number of plausible and semi-plausible uses for blinded signatures have been proposed. Some
of these involve the use of “digital coins” which function with anonymity similar to cash. (Remark:
many of these schemes seem quite dangerous, in that they allow way too much freedom for activities
such as money laundering or extortion.) We’ll present a simple application that allows voters to
anonymously donote money to a politician, without their bank knowing to whom they donated.

The scenario is as follows. Bob is a bank, and has a particular set of public and private keys
z and x, which he uses for the following purpose: he announces that he is willing to sign any
blinded message with his private key and, furthermore, if anyone presents him with a string of
ascii symbols which have been encoded with his private key, then he will pay that person $1000.
A number of voters such as Alice then randomly choose a longish string of ascii characters, blind
them and present them to Bob for signature. Bob charges them $1000 plus a small service charge
for this. Alice unblinds the signature, so that she now has a string of ascii symbols encoded with
Bob’s private key. She donates this to a politician (Jack, say). Jack takes the signed ascii string
to Bob, who pays him $1000 (minus a small service charge) after verifying that he has not already
paid on that particular ascii string.

There are several assumptions in the above scenario. One is that ascii strings are quite rare
compared to the set of all possible strings, so the probability is very low that someone who doesn’t
know Bob’s private key can find a signature of Bob’s on an ascii string. Second, Bob has to
announce that this particular private/public key is solely for the purpose of signing $1000 coins.
Third, Alice has to choose her random string of ascii symbols to be long enough so that no one
else will randomly choose the same string.

As for the privacy aspects of the above procedure. Bob knows that Alice obtained a $1000
digital coin, but presumably many other voters did the same. When Bob received the unblinded
version of the coin from Jack for payment, he has absolutely no information about which of the
coins he is redeeming. That is to say, he has no way to link the action of giving Alice the blinded
signature to the action of Jack returning the unblinded signature. So Bob has no way of knowing
which voters donated to which candidates.
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Homework Problems

This is a complete list of the homework assignments. The problems are also stated in the
preceding scribe notes, often with substantial hints.

1. Prove that, for all constants 0 < δ < 1
2 and c > 0,

BPP (
1
nc

) = BPP (δ) = BPP (
1
2
− 2−nc

).

2. Prove that if P = PP , then P = NP . In addition, if all predicates in PP are feasible, then all
predicates in NP are feasible.

3. Prove that BPP ⊆ P/poly and RP ⊆ P/poly.

4. Prove that if that P = NP , then pseudorandom number generators do not exist.

5. Prove that if P = NP then NP -search problems do not exist.

6. Prove that if P = NP , then NP -search problems are solvable in polynomial time.

7. Prove that there is a polynomial time algorithm for finding square roots modulo a prime or a
prime power.

8. Prove that a pseudo-random number generator is next-bit unpredictable.

9. Prove that if g is a pseudorandom number generator, then the stream cryptosystem constructed
from g is secure against passive attacks where the adversary may force Alice to send one of
two messages.

10. Prove that if g is a pseudorandom number generator, then the stream cryptosystem constructed
from g is secure against simple plaintext attacks.

11. Formulate good notions of simple passive attacks and simple plaintext attacks block cryptosys-
tems. Prove that if f is a pseudorandom function generator, then the block cryptosystem
based on f is secure.

12. Generalize the linear polynomial space method for generating pairwise independent variables
to a method for generating k-wise independent values. Analyze the amount of randomness
used by this method.

13. Let X be a {−1, 1}-valued random variable. Let p = Pr[X = 1]. Show the following:
(a) E[X] = 2p − 1, (b) V ar(X) = 4p(p − 1), and (c) V ar(X) ≤ 1.

14. State a prove a generalization of Markov’s Inequality with X ≥ a (or X ≤ a) instead of X ≥ 0.
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15. Re-do the proof that RP ( 1
n) = RP (1

2) using pairwise independent sampling. Compare the
amount of randomness and the number of samples in the new proof to the earlier proof.

16. Give an example of a function which has hidden inner product bit, but which is not one-way.

17. Prove that the various characterizations of statistical distance are equivalent. Also, prove that
statistical distance is a metric.

18. Prove that if D1
n and D2

n are S12(n)-computationally indistinguishable and that if D2
n and D3

n

are S23(n)-computationally indistinguishable, then D1
n and D3

n are S13(n) computationally
indistinguishable where

S13 =
1

1/S12 + 1/S23
.

19. Let k(n) = nO(1). Prove that Dk(n)
n and Ek(n)

n are computationally indistinguishable, provided
that D and E are computationally indistinguishable.

20. Prove directly that if X and Y are independent, then ent(〈X, Y 〉) = ent(X) + ent(Y ).

21. Prove that Huffman codings, f , have EX [|f(X)|] ≤ ent(X) + 1.

22. Prove that Huffman encodings are optimal prefix-free encodings.
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